- -

Measurement and Numerical Simulation of Air Velocity in a Tunnel-Ventilated Broiler House

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Measurement and Numerical Simulation of Air Velocity in a Tunnel-Ventilated Broiler House

Mostrar el registro completo del ítem

Bustamante García, E.; García Diego, FJ.; Calvet Sanz, S.; Torres Salvador, AG.; Hospitaler Pérez, A. (2015). Measurement and Numerical Simulation of Air Velocity in a Tunnel-Ventilated Broiler House. Sustainability. 7(2):2066-2085. https://doi.org/10.3390/su7022066

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/64106

Ficheros en el ítem

Metadatos del ítem

Título: Measurement and Numerical Simulation of Air Velocity in a Tunnel-Ventilated Broiler House
Autor: Bustamante García, Eliseo García Diego, Fernando Juan Calvet Sanz, Salvador Torres Salvador, Antonio Germán Hospitaler Pérez, Antonio
Entidad UPV: Universitat Politècnica de València. Instituto de Ciencia y Tecnología Animal - Institut de Ciència i Tecnologia Animal
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal
Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil
Fecha difusión:
Resumen:
A building needs to be designed for the whole period of its useful life according to its requirements. However, future climate predictions involve some uncertainty. Thus, several sustainable strategies of adaptation need ...[+]
Palabras clave: Sustainable design , Adaptation and retrofit (A & R) , Broiler house , Mediterranean climate , Tunnel ventilation , Sensors , CFD , COMPUTATIONAL FLUID-DYNAMICS , POULTRY BUILDINGS , FLOW , SYSTEM , TEMPERATURE , PREDICTION , PERFORMANCE , VALIDATION , EFFICIENCY
Derechos de uso: Reconocimiento (by)
Fuente:
Sustainability. (issn: 2071-1050 )
DOI: 10.3390/su7022066
Editorial:
MDPI
Versión del editor: http://dx.doi.org/10.3390/su7022066
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//GV04B-511/
info:eu-repo/grantAgreement/UPV//2614/
Agradecimientos:
This work was funded by the project GV04B-511 (Generalitat Valenciana, Spain) and by the Vicerrectorado of Investigacion of the Universitat Politecnica de Valencia (Programa de Apoyo a la Investigacion y Desarrollo ...[+]
Tipo: Artículo

References

Holmes, M. J., & Hacker, J. N. (2007). Climate change, thermal comfort and energy: Meeting the design challenges of the 21st century. Energy and Buildings, 39(7), 802-814. doi:10.1016/j.enbuild.2007.02.009

Nardone, A., Ronchi, B., Lacetera, N., Ranieri, M. S., & Bernabucci, U. (2010). Effects of climate changes on animal production and sustainability of livestock systems. Livestock Science, 130(1-3), 57-69. doi:10.1016/j.livsci.2010.02.011

Derek, T., & Clements-Croome, J. (1997). What do we mean by intelligent buildings? Automation in Construction, 6(5-6), 395-400. doi:10.1016/s0926-5805(97)00018-6 [+]
Holmes, M. J., & Hacker, J. N. (2007). Climate change, thermal comfort and energy: Meeting the design challenges of the 21st century. Energy and Buildings, 39(7), 802-814. doi:10.1016/j.enbuild.2007.02.009

Nardone, A., Ronchi, B., Lacetera, N., Ranieri, M. S., & Bernabucci, U. (2010). Effects of climate changes on animal production and sustainability of livestock systems. Livestock Science, 130(1-3), 57-69. doi:10.1016/j.livsci.2010.02.011

Derek, T., & Clements-Croome, J. (1997). What do we mean by intelligent buildings? Automation in Construction, 6(5-6), 395-400. doi:10.1016/s0926-5805(97)00018-6

Bustamante, E., Guijarro, E., García-Diego, F.-J., Balasch, S., Hospitaler, A., & Torres, A. G. (2012). Multisensor System for Isotemporal Measurements to Assess Indoor Climatic Conditions in Poultry Farms. Sensors, 12(5), 5752-5774. doi:10.3390/s120505752

Bustamante, E., García-Diego, F.-J., Calvet, S., Estellés, F., Beltrán, P., Hospitaler, A., & Torres, A. (2013). Exploring Ventilation Efficiency in Poultry Buildings: The Validation of Computational Fluid Dynamics (CFD) in a Cross-Mechanically Ventilated Broiler Farm. Energies, 6(5), 2605-2623. doi:10.3390/en6052605

Stamp Dawkins, M., Donnelly, C. A., & Jones, T. A. (2004). Chicken welfare is influenced more by housing conditions than by stocking density. Nature, 427(6972), 342-344. doi:10.1038/nature02226

Medio Millón de Pollos Mueren por el Fuerte Calor de los Últimos Días http://elpais.com/diario/2003/06/17/cvalenciana/1055877480_850215.html

Korea Heat Wave Kills Off 830,000 Chickens (in August 2012) http://www.worldpoultry.net/Broilers/Health/2012/8/S-Korean-heat-wave-kills-off-830000-chickens-WP010736W/

Blanes-Vidal, V., Guijarro, E., Balasch, S., & Torres, A. G. (2008). Application of computational fluid dynamics to the prediction of airflow in a mechanically ventilated commercial poultry building. Biosystems Engineering, 100(1), 105-116. doi:10.1016/j.biosystemseng.2008.02.004

Mitchell, M. A., & Kettlewell, P. J. (1998). Physiological stress and welfare of broiler chickens in transit: solutions not problems! Poultry Science, 77(12), 1803-1814. doi:10.1093/ps/77.12.1803

Sohail, M. U., Hume, M. E., Byrd, J. A., Nisbet, D. J., Ijaz, A., Sohail, A., … Rehman, H. (2012). Effect of supplementation of prebiotic mannan-oligosaccharides and probiotic mixture on growth performance of broilers subjected to chronic heat stress. Poultry Science, 91(9), 2235-2240. doi:10.3382/ps.2012-02182

Norton, T., Sun, D.-W., Grant, J., Fallon, R., & Dodd, V. (2007). Applications of computational fluid dynamics (CFD) in the modelling and design of ventilation systems in the agricultural industry: A review. Bioresource Technology, 98(12), 2386-2414. doi:10.1016/j.biortech.2006.11.025

Bartzanas, T., Kittas, C., Sapounas, A. A., & Nikita-Martzopoulou, C. (2007). Analysis of airflow through experimental rural buildings: Sensitivity to turbulence models. Biosystems Engineering, 97(2), 229-239. doi:10.1016/j.biosystemseng.2007.02.009

Harral, B. B., & Boon, C. R. (1997). Comparison of Predicted and Measured Air Flow Patterns in a Mechanically Ventilated Livestock Building without Animals. Journal of Agricultural Engineering Research, 66(3), 221-228. doi:10.1006/jaer.1996.0140

S. R. Pawar, J. M. Cimbala, E. F. Wheeler, & D. V. Lindberg. (2007). Analysis of Poultry House Ventilation Using Computational Fluid Dynamics. Transactions of the ASABE, 50(4), 1373-1382. doi:10.13031/2013.23626

LEE, I.-B., SASE, S., & SUNG, S.-H. (2007). Evaluation of CFD Accuracy for the Ventilation Study of a Naturally Ventilated Broiler House. Japan Agricultural Research Quarterly: JARQ, 41(1), 53-64. doi:10.6090/jarq.41.53

Mostafa, E., Lee, I.-B., Song, S.-H., Kwon, K.-S., Seo, I.-H., Hong, S.-W., … Han, H.-T. (2012). Computational fluid dynamics simulation of air temperature distribution inside broiler building fitted with duct ventilation system. Biosystems Engineering, 112(4), 293-303. doi:10.1016/j.biosystemseng.2012.05.001

R. E. Lacey, J. S. Redwine, C. B. Parnell, & Jr. (2003). PARTICULATE MATTER AND AMMONIA EMISSION FACTORS FOR TUNNEL VENTILATED BROILER PRODUCTION HOUSES IN THE SOUTHERN U.S. Transactions of the ASAE, 46(4). doi:10.13031/2013.13958

Blanes-Vidal, V., Guijarro, E., Nadimi, E. S., & Torres, A. G. (2010). Development and field test of an on-line computerized instrumentation system for air velocity, temperature and differential pressure measurements in poultry houses. Spanish Journal of Agricultural Research, 8(3), 570. doi:10.5424/sjar/2010083-1252

Launder, B. E., & Spalding, D. B. (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3(2), 269-289. doi:10.1016/0045-7825(74)90029-2

Bjerg, B., Svidt, K., Zhang, G., Morsing, S., & Johnsen, J. O. (2002). Modeling of air inlets in CFD prediction of airflow in ventilated animal houses. Computers and Electronics in Agriculture, 34(1-3), 223-235. doi:10.1016/s0168-1699(01)00189-2

Calvet, S., Cambra-López, M., Blanes-Vidal, V., Estellés, F., & Torres, A. G. (2010). Ventilation rates in mechanically-ventilated commercial poultry buildings in Southern Europe: Measurement system development and uncertainty analysis. Biosystems Engineering, 106(4), 423-432. doi:10.1016/j.biosystemseng.2010.05.006

Homepage http://www.testo.com

Heber, A. J., Boon, C. R., & Peugh, M. W. (1996). Air Patterns and Turbulence in an Experimental Livestock Building. Journal of Agricultural Engineering Research, 64(3), 209-226. doi:10.1006/jaer.1996.0062

Oberkampf, W. L., & Trucano, T. G. (2002). Verification and validation in computational fluid dynamics. Progress in Aerospace Sciences, 38(3), 209-272. doi:10.1016/s0376-0421(02)00005-2

Omega Engineering, Inc. http://www.omega.com/Temperature/pdf/TFD_RTD.pdf

Sensortechnics Inc. http://www.sensortechnics.com

Posner, J. D., Buchanan, C. R., & Dunn-Rankin, D. (2003). Measurement and prediction of indoor air flow in a model room. Energy and Buildings, 35(5), 515-526. doi:10.1016/s0378-7788(02)00163-9

Lott, B. D., Simmons, J. D., & May, J. D. (1998). Air velocity and high temperature effects on broiler performance. Poultry Science, 77(3), 391-393. doi:10.1093/ps/77.3.391

Zuidhof, M. J., Schneider, B. L., Carney, V. L., Korver, D. R., & Robinson, F. E. (2014). Growth, efficiency, and yield of commercial broilers from 1957, 1978, and 2005. Poultry Science, 93(12), 2970-2982. doi:10.3382/ps.2014-04291

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem