dc.contributor.author |
Canto-Perello, Julian
|
es_ES |
dc.contributor.author |
Martinez-Garcia, María Peña
|
es_ES |
dc.contributor.author |
Curiel Esparza, Jorge
|
es_ES |
dc.contributor.author |
Martín Utrillas, Manuel Guzmán
|
es_ES |
dc.date.accessioned |
2016-05-16T09:55:54Z |
|
dc.date.available |
2016-05-16T09:55:54Z |
|
dc.date.issued |
2015-06 |
|
dc.identifier.issn |
2071-1050 |
|
dc.identifier.uri |
http://hdl.handle.net/10251/64107 |
|
dc.description.abstract |
Technological advances have allowed the development of new roof assembly typologies with higher efficiency and less waste. However, in the construction sector the focus is generally on reducing cost and not in sustainable development factors. Short-sighted building planning based only on economic criteria should be avoided improving decision
support systems. In addition, the selection of an appropriate roof assembly in a building s
design stage is a complex problem due to the existence of different tangible and intangible
factors and the multiple alternatives available. The roof typologies under study involve
prefabricated concrete, steel and laminated wood structures. This research work applies a
multi-criteria hybrid model combining the Analytical Hierarchy Process with the Delphi
method and the VIKOR technique for implementing sustainability criteria in the selection of a roof assembly in medium span buildings. The proposed decision support system enables the use of the triple bottom line that considers economic, social and environmental criteria. Under the criteria analyzed, the compromise solution found is the self-supporting curved system. |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
MDPI |
es_ES |
dc.relation.ispartof |
Sustainability |
es_ES |
dc.rights |
Reconocimiento (by) |
es_ES |
dc.subject |
Roof assembly |
es_ES |
dc.subject |
Triple bottom line |
es_ES |
dc.subject |
Multicriteria decision making |
es_ES |
dc.subject |
DECISION-MAKING MODEL |
es_ES |
dc.subject |
LIFE-CYCLE ASSESSMENT |
es_ES |
dc.subject |
UNDERGROUND SPACE |
es_ES |
dc.subject |
UTILITY TUNNELS |
es_ES |
dc.subject |
VIKOR METHOD |
es_ES |
dc.subject |
SYSTEMS |
es_ES |
dc.subject |
ENERGY |
es_ES |
dc.subject |
CONCRETE |
es_ES |
dc.subject |
DESIGN |
es_ES |
dc.subject |
AHP |
es_ES |
dc.subject.classification |
INGENIERIA DE LA CONSTRUCCION |
es_ES |
dc.subject.classification |
FISICA APLICADA |
es_ES |
dc.title |
Implementing Sustainability Criteria for Selecting a Roof Assembly Typology in Medium Span Buildings |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.3390/su7066854 |
|
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada |
es_ES |
dc.description.bibliographicCitation |
Canto-Perello, J.; Martinez-Garcia, MP.; Curiel Esparza, J.; Martín Utrillas, MG. (2015). Implementing Sustainability Criteria for Selecting a Roof Assembly Typology in Medium Span Buildings. Sustainability. 7(6):6854-6871. doi:10.3390/su7066854 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
http://dx.doi.org/10.3390/su7066854 |
es_ES |
dc.description.upvformatpinicio |
6854 |
es_ES |
dc.description.upvformatpfin |
6871 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
7 |
es_ES |
dc.description.issue |
6 |
es_ES |
dc.relation.senia |
290510 |
es_ES |
dc.description.references |
United Nations 1998 Kyoto Protocol to the United Nations Framework Convention on Climate Changehttp://unfccc.int/resource/docs/convkp/kpeng.pdf |
es_ES |
dc.description.references |
Canto-Perello, J., & Curiel-Esparza, J. (2013). Assessing governance issues of urban utility tunnels. Tunnelling and Underground Space Technology, 33, 82-87. doi:10.1016/j.tust.2012.08.007 |
es_ES |
dc.description.references |
Aguado, A., Caño, A. del, de la Cruz, M. P., Gómez, D., & Josa, A. (2012). Sustainability Assessment of Concrete Structures within the Spanish Structural Concrete Code. Journal of Construction Engineering and Management, 138(2), 268-276. doi:10.1061/(asce)co.1943-7862.0000419 |
es_ES |
dc.description.references |
Ramesh, T., Prakash, R., & Shukla, K. K. (2010). Life cycle energy analysis of buildings: An overview. Energy and Buildings, 42(10), 1592-1600. doi:10.1016/j.enbuild.2010.05.007 |
es_ES |
dc.description.references |
Reza, B., Sadiq, R., & Hewage, K. (2011). Sustainability assessment of flooring systems in the city of Tehran: An AHP-based life cycle analysis. Construction and Building Materials, 25(4), 2053-2066. doi:10.1016/j.conbuildmat.2010.11.041 |
es_ES |
dc.description.references |
Zadeh, S., Hunt, D., Lombardi, D., & Rogers, C. (2013). Shared Urban Greywater Recycling Systems: Water Resource Savings and Economic Investment. Sustainability, 5(7), 2887-2912. doi:10.3390/su5072887 |
es_ES |
dc.description.references |
Hunt, D., & Rogers, C. (2014). A Benchmarking System for Domestic Water Use. Sustainability, 6(5), 2993-3018. doi:10.3390/su6052993 |
es_ES |
dc.description.references |
Curiel-Esparza, J., & Canto-Perello, J. (2012). Understanding the major drivers for implementation of municipal sustainable policies in underground space. International Journal of Sustainable Development & World Ecology, 19(6), 506-514. doi:10.1080/13504509.2012.732973 |
es_ES |
dc.description.references |
Collier, Z. A., Wang, D., Vogel, J. T., Tatham, E. K., & Linkov, I. (2013). Sustainable roofing technology under multiple constraints: a decision-analytical approach. Environment Systems and Decisions, 33(2), 261-271. doi:10.1007/s10669-013-9446-5 |
es_ES |
dc.description.references |
Ozdemir, M. S., & Saaty, T. L. (2006). The unknown in decision making. European Journal of Operational Research, 174(1), 349-359. doi:10.1016/j.ejor.2004.12.017 |
es_ES |
dc.description.references |
Lee, G. K. L., & Chan, E. H. W. (2007). The Analytic Hierarchy Process (AHP) Approach for Assessment of Urban Renewal Proposals. Social Indicators Research, 89(1), 155-168. doi:10.1007/s11205-007-9228-x |
es_ES |
dc.description.references |
Syamsuddin, I., & Hwang, J. (2010). The Use of AHP in Security Policy Decision Making: An Open Office Calc Application. Journal of Software, 5(10). doi:10.4304/jsw.5.10.1162-1169 |
es_ES |
dc.description.references |
Thapa, R. B., & Murayama, Y. (2010). Drivers of urban growth in the Kathmandu valley, Nepal: Examining the efficacy of the analytic hierarchy process. Applied Geography, 30(1), 70-83. doi:10.1016/j.apgeog.2009.10.002 |
es_ES |
dc.description.references |
Canto-Perello, J., Curiel-Esparza, J., & Calvo, V. (2013). Criticality and threat analysis on utility tunnels for planning security policies of utilities in urban underground space. Expert Systems with Applications, 40(11), 4707-4714. doi:10.1016/j.eswa.2013.02.031 |
es_ES |
dc.description.references |
Marchais-Roubelat, A., & Roubelat, F. (2011). The Delphi method as a ritual: Inquiring the Delphic Oracle. Technological Forecasting and Social Change, 78(9), 1491-1499. doi:10.1016/j.techfore.2011.04.012 |
es_ES |
dc.description.references |
Von der Gracht, H. A. (2012). Consensus measurement in Delphi studies. Technological Forecasting and Social Change, 79(8), 1525-1536. doi:10.1016/j.techfore.2012.04.013 |
es_ES |
dc.description.references |
Curiel-Esparza, J., & Canto-Perello, J. (2013). Selecting utilities placement techniques in urban underground engineering. Archives of Civil and Mechanical Engineering, 13(2), 276-285. doi:10.1016/j.acme.2013.02.001 |
es_ES |
dc.description.references |
Mela, K., Tiainen, T., & Heinisuo, M. (2012). Comparative study of multiple criteria decision making methods for building design. Advanced Engineering Informatics, 26(4), 716-726. doi:10.1016/j.aei.2012.03.001 |
es_ES |
dc.description.references |
San Cristóbal, J. R. (2012). Contractor Selection Using Multicriteria Decision-Making Methods. Journal of Construction Engineering and Management, 138(6), 751-758. doi:10.1061/(asce)co.1943-7862.0000488 |
es_ES |
dc.description.references |
Lee, W.-S. (2013). Merger and acquisition evaluation and decision making model. The Service Industries Journal, 33(15-16), 1473-1494. doi:10.1080/02642069.2011.634905 |
es_ES |
dc.description.references |
Rostamzadeh, R., Ismail, K., & Zavadskas, E. K. (2014). MULTI CRITERIA DECISION MAKING FOR ASSISTING BUSINESS ANGELS IN INVESTMENTS. Technological and Economic Development of Economy, 20(4), 696-720. doi:10.3846/20294913.2014.984364 |
es_ES |
dc.description.references |
Tsai, P.-H., & Chang, S.-C. (2014). COMPARING THE APPLE IPAD AND NON-APPLE CAMP TABLET PCS: A MULTICRITERIA DECISION ANALYSIS. Technological and Economic Development of Economy, 19(Supplement_1), S256-S284. doi:10.3846/20294913.2013.881929 |
es_ES |
dc.description.references |
San-José, J. T., Garrucho, I., Losada, R., & Cuadrado, J. (2007). A proposal for environmental indicators towards industrial building sustainable assessment. International Journal of Sustainable Development & World Ecology, 14(2), 160-173. doi:10.1080/13504500709469716 |
es_ES |
dc.description.references |
Martin-Utrillas, M., Reyes-Medina, M., Curiel-Esparza, J., & Canto-Perello, J. (2014). Hybrid method for selection of the optimal process of leachate treatment in waste treatment and valorization plants or landfills. Clean Technologies and Environmental Policy, 17(4), 873-885. doi:10.1007/s10098-014-0834-4 |
es_ES |
dc.description.references |
Łowińska-Kluge, A., & Błaszczyński, T. (2012). The influence of internal corrosion on the durability of concrete. Archives of Civil and Mechanical Engineering, 12(2), 219-227. doi:10.1016/j.acme.2012.03.002 |
es_ES |
dc.description.references |
Khosrowshahi, F., & Alani, A. (2011). Visualisation of impact of time on the internal lighting of a building. Automation in Construction, 20(2), 145-154. doi:10.1016/j.autcon.2010.09.012 |
es_ES |
dc.description.references |
Kim, S., Kim, G.-H., & Lee, Y.-D. (2013). Sustainability Life Cycle Cost Analysis of Roof Waterproofing Methods Considering LCCO2. Sustainability, 6(1), 158-174. doi:10.3390/su6010158 |
es_ES |
dc.description.references |
Lo, S. M., Zhao, C. M., Liu, M., & Coping, A. (2008). A simulation model for studying the implementation of performance-based fire safety design in buildings. Automation in Construction, 17(7), 852-863. doi:10.1016/j.autcon.2008.02.014 |
es_ES |
dc.description.references |
Markelj, J., Kitek Kuzman, M., Grošelj, P., & Zbašnik-Senegačnik, M. (2014). A Simplified Method for Evaluating Building Sustainability in the Early Design Phase for Architects. Sustainability, 6(12), 8775-8795. doi:10.3390/su6128775 |
es_ES |
dc.description.references |
ALwaer, H., & Clements-Croome, D. J. (2010). Key performance indicators (KPIs) and priority setting in using the multi-attribute approach for assessing sustainable intelligent buildings. Building and Environment, 45(4), 799-807. doi:10.1016/j.buildenv.2009.08.019 |
es_ES |
dc.description.references |
Malmqvist, T., Glaumann, M., Scarpellini, S., Zabalza, I., Aranda, A., Llera, E., & Díaz, S. (2011). Life cycle assessment in buildings: The ENSLIC simplified method and guidelines. Energy, 36(4), 1900-1907. doi:10.1016/j.energy.2010.03.026 |
es_ES |
dc.description.references |
Shao, L., Chen, G. Q., Chen, Z. M., Guo, S., Han, M. Y., Zhang, B., … Ahmad, B. (2014). Systems accounting for energy consumption and carbon emission by building. Communications in Nonlinear Science and Numerical Simulation, 19(6), 1859-1873. doi:10.1016/j.cnsns.2013.10.003 |
es_ES |
dc.description.references |
Zabalza Bribián, I., Valero Capilla, A., & Aranda Usón, A. (2011). Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Building and Environment, 46(5), 1133-1140. doi:10.1016/j.buildenv.2010.12.002 |
es_ES |
dc.description.references |
Goggins, J., Keane, T., & Kelly, A. (2010). The assessment of embodied energy in typical reinforced concrete building structures in Ireland. Energy and Buildings, 42(5), 735-744. doi:10.1016/j.enbuild.2009.11.013 |
es_ES |
dc.description.references |
Broun, R., Babaizadeh, H., Zakersalehi, A., & Menzies, G. (2014). Integrated Life Cycle Energy and Greenhouse Gas Analysis of Exterior Wall Systems for Residential Buildings. Sustainability, 6(12), 8592-8603. doi:10.3390/su6128592 |
es_ES |
dc.description.references |
Parasonis, J., Keizikas, A., & Kalibatiene, D. (2012). The relationship between the shape of a building and its energy performance. Architectural Engineering and Design Management, 8(4), 246-256. doi:10.1080/17452007.2012.675139 |
es_ES |
dc.description.references |
Saaty, T. L., & Ozdemir, M. S. (2003). Why the magic number seven plus or minus two. Mathematical and Computer Modelling, 38(3-4), 233-244. doi:10.1016/s0895-7177(03)90083-5 |
es_ES |
dc.description.references |
Kuo, Y., Yang, T., & Huang, G.-W. (2008). The use of grey relational analysis in solving multiple attribute decision-making problems. Computers & Industrial Engineering, 55(1), 80-93. doi:10.1016/j.cie.2007.12.002 |
es_ES |
dc.description.references |
Opricovic, S., & Tzeng, G.-H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156(2), 445-455. doi:10.1016/s0377-2217(03)00020-1 |
es_ES |
dc.description.references |
Curiel-Esparza, J., Cuenca-Ruiz, M., Martin-Utrillas, M., & Canto-Perello, J. (2014). Selecting a Sustainable Disinfection Technique for Wastewater Reuse Projects. Water, 6(9), 2732-2747. doi:10.3390/w6092732 |
es_ES |
dc.description.references |
Sayadi, M. K., Heydari, M., & Shahanaghi, K. (2009). Extension of VIKOR method for decision making problem with interval numbers. Applied Mathematical Modelling, 33(5), 2257-2262. doi:10.1016/j.apm.2008.06.002 |
es_ES |
dc.description.references |
Opricovic, S., & Tzeng, G.-H. (2007). Extended VIKOR method in comparison with outranking methods. European Journal of Operational Research, 178(2), 514-529. doi:10.1016/j.ejor.2006.01.020 |
es_ES |