- -

p-n Heterojunction of Doped Graphene Films Obtained by Pyrolysis of Biomass Precursors

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

p-n Heterojunction of Doped Graphene Films Obtained by Pyrolysis of Biomass Precursors

Mostrar el registro completo del ítem

Latorre Sánchez, M.; Primo Arnau, AM.; Atienzar Corvillo, PE.; Forneli Rubio, MA.; García Gómez, H. (2015). p-n Heterojunction of Doped Graphene Films Obtained by Pyrolysis of Biomass Precursors. Small. 11(8):970-975. https://doi.org/10.1002/smll.201402278

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/64120

Ficheros en el ítem

Metadatos del ítem

Título: p-n Heterojunction of Doped Graphene Films Obtained by Pyrolysis of Biomass Precursors
Autor: Latorre Sánchez, Marcos Primo Arnau, Ana María Atienzar Corvillo, Pedro Enrique Forneli Rubio, Mª Amparo García Gómez, Hermenegildo
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
Nitrogen-doped graphene [(N)G] obtained by pyrolysis at 900 degrees C of nanometric chitosan films exhibits a Hall effect characteristic of n-type semiconductors. In contrast, boron-doped graphene [(B)G] obtained by pyrolysis ...[+]
Palabras clave: HYDROGEN GENERATION , PHOTOCATALYST , SILICON , OXIDE , CARBOCATALYST , OXIDATION
Derechos de uso: Cerrado
Fuente:
Small. (issn: 1613-6810 ) (eissn: 1613-6829 )
DOI: 10.1002/smll.201402278
Editorial:
Wiley-VCH Verlag
Versión del editor: http://dx.doi.org/10.1002/smll.201402278
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/
Agradecimientos:
Financial Support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2012-32315) is gratefully acknowledged. MLS and PA thank also to the Spanish Ministry and the National Research Council for a ...[+]
Tipo: Artículo

References

Dreyer, D. R., & Bielawski, C. W. (2011). Carbocatalysis: Heterogeneous carbons finding utility in synthetic chemistry. Chemical Science, 2(7), 1233. doi:10.1039/c1sc00035g

Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183-191. doi:10.1038/nmat1849

Huang, C., Li, C., & Shi, G. (2012). Graphene based catalysts. Energy & Environmental Science, 5(10), 8848. doi:10.1039/c2ee22238h [+]
Dreyer, D. R., & Bielawski, C. W. (2011). Carbocatalysis: Heterogeneous carbons finding utility in synthetic chemistry. Chemical Science, 2(7), 1233. doi:10.1039/c1sc00035g

Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183-191. doi:10.1038/nmat1849

Huang, C., Li, C., & Shi, G. (2012). Graphene based catalysts. Energy & Environmental Science, 5(10), 8848. doi:10.1039/c2ee22238h

Latorre-Sánchez, M., Lavorato, C., Puche, M., Fornés, V., Molinari, R., & Garcia, H. (2012). Visible-Light Photocatalytic Hydrogen Generation by Using Dye-Sensitized Graphene Oxide as a Photocatalyst. Chemistry - A European Journal, 18(52), 16774-16783. doi:10.1002/chem.201202372

Lavorato, C., Primo, A., Molinari, R., & Garcia, H. (2013). N-Doped Graphene Derived from Biomass as a Visible-Light Photocatalyst for Hydrogen Generation from Water/Methanol Mixtures. Chemistry - A European Journal, 20(1), 187-194. doi:10.1002/chem.201303689

Xiang, Q., Yu, J., & Jaroniec, M. (2012). Graphene-based semiconductor photocatalysts. Chem. Soc. Rev., 41(2), 782-796. doi:10.1039/c1cs15172j

Yeh, T.-F., Syu, J.-M., Cheng, C., Chang, T.-H., & Teng, H. (2010). Graphite Oxide as a Photocatalyst for Hydrogen Production from Water. Advanced Functional Materials, 20(14), 2255-2262. doi:10.1002/adfm.201000274

Zhang, N., Zhang, Y., & Xu, Y.-J. (2012). Recent progress on graphene-based photocatalysts: current status and future perspectives. Nanoscale, 4(19), 5792. doi:10.1039/c2nr31480k

Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M., & García, H. (2012). From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 48(74), 9254. doi:10.1039/c2cc34978g

Primo, A., Sánchez, E., Delgado, J. M., & García, H. (2014). High-yield production of N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon, 68, 777-783. doi:10.1016/j.carbon.2013.11.068

Latorre-Sánchez, M., Primo, A., & García, H. (2013). P-Doped Graphene Obtained by Pyrolysis of Modified Alginate as a Photocatalyst for Hydrogen Generation from Water-Methanol Mixtures. Angewandte Chemie International Edition, 52(45), 11813-11816. doi:10.1002/anie.201304505

Dhakshinamoorthy, A., Primo, A., Concepcion, P., Alvaro, M., & Garcia, H. (2013). Doped Graphene as a Metal-Free Carbocatalyst for the Selective Aerobic Oxidation of Benzylic Hydrocarbons, Cyclooctane and Styrene. Chemistry - A European Journal, 19(23), 7547-7554. doi:10.1002/chem.201300653

Caughey, D. M., & Thomas, R. E. (1967). Carrier mobilities in silicon empirically related to doping and field. Proceedings of the IEEE, 55(12), 2192-2193. doi:10.1109/proc.1967.6123

Spear, W. E., & Le Comber, P. G. (1975). Substitutional doping of amorphous silicon. Solid State Communications, 17(9), 1193-1196. doi:10.1016/0038-1098(75)90284-7

Cui, Y., Duan, X., Hu, J., & Lieber, C. M. (2000). Doping and Electrical Transport in Silicon Nanowires. The Journal of Physical Chemistry B, 104(22), 5213-5216. doi:10.1021/jp0009305

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem