Cooper, J. A., Lu, H. H., Ko, F. K., Freeman, J. W., & Laurencin, C. T. (2005). Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials, 26(13), 1523-1532. doi:10.1016/j.biomaterials.2004.05.014
Liljensten, E., Gisselfält, K., Edberg, B., Bertilsson, H., Flodin, P., Nilsson, A., … Peterson, L. (2002). Journal of Materials Science: Materials in Medicine, 13(4), 351-359. doi:10.1023/a:1014380332762
Spaans, C. ., Belgraver, V. ., Rienstra, O., de Groot, J. ., Veth, R. P. ., & Pennings, A. . (2000). Solvent-free fabrication of micro-porous polyurethane amide and polyurethane-urea scaffolds for repair and replacement of the knee-joint meniscus. Biomaterials, 21(23), 2453-2460. doi:10.1016/s0142-9612(00)00113-7
[+]
Cooper, J. A., Lu, H. H., Ko, F. K., Freeman, J. W., & Laurencin, C. T. (2005). Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials, 26(13), 1523-1532. doi:10.1016/j.biomaterials.2004.05.014
Liljensten, E., Gisselfält, K., Edberg, B., Bertilsson, H., Flodin, P., Nilsson, A., … Peterson, L. (2002). Journal of Materials Science: Materials in Medicine, 13(4), 351-359. doi:10.1023/a:1014380332762
Spaans, C. ., Belgraver, V. ., Rienstra, O., de Groot, J. ., Veth, R. P. ., & Pennings, A. . (2000). Solvent-free fabrication of micro-porous polyurethane amide and polyurethane-urea scaffolds for repair and replacement of the knee-joint meniscus. Biomaterials, 21(23), 2453-2460. doi:10.1016/s0142-9612(00)00113-7
Elema, H., de Groot, J. H., Nijenhuis, A. J., Pennings, A. J., Veth, R. P. H., Klompmaker, J., & Jansen, H. W. B. (1990). Use of porous biodegradable polymer implants in meniscus reconstruction. 2) Biological evaluation of porous biodegradable polymer implants in menisci. Colloid and Polymer Science, 268(12), 1082-1088. doi:10.1007/bf01410673
Bensaı̈d, W., Triffitt, J. ., Blanchat, C., Oudina, K., Sedel, L., & Petite, H. (2003). A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials, 24(14), 2497-2502. doi:10.1016/s0142-9612(02)00618-x
Seymour, R. W., Estes, G. M., & Cooper, S. L. (1970). Infrared Studies of Segmented Polyurethan Elastomers. I. Hydrogen Bonding. Macromolecules, 3(5), 579-583. doi:10.1021/ma60017a021
Bogdanov, B., Toncheva, V., Schacht, E., Finelli, L., Sarti, B., & Scandola, M. (1999). Physical properties of poly(ester-urethanes) prepared from different molar mass polycaprolactone-diols. Polymer, 40(11), 3171-3182. doi:10.1016/s0032-3861(98)00552-7
Pêgo, A. P., Poot, A. A., Grijpma, D. W., & Feijen, J. (2003). Biodegradable elastomeric scaffolds for soft tissue engineering. Journal of Controlled Release, 87(1-3), 69-79. doi:10.1016/s0168-3659(02)00351-6
Guan, J., & Wagner, W. R. (2005). Synthesis, Characterization and Cytocompatibility of Polyurethaneurea Elastomers with Designed Elastase Sensitivity. Biomacromolecules, 6(5), 2833-2842. doi:10.1021/bm0503322
Guan, J., Stankus, J. J., & Wagner, W. R. (2007). Biodegradable elastomeric scaffolds with basic fibroblast growth factor release. Journal of Controlled Release, 120(1-2), 70-78. doi:10.1016/j.jconrel.2007.04.002
Guan, J., Sacks, M. S., Beckman, E. J., & Wagner, W. R. (2004). Biodegradable poly(ether ester urethane)urea elastomers based on poly(ether ester) triblock copolymers and putrescine: synthesis, characterization and cytocompatibility. Biomaterials, 25(1), 85-96. doi:10.1016/s0142-9612(03)00476-9
Mazzu, A. L., & Smith, C. P. (1984). Determination of extractable methylene dianiline in thermoplastic polyurethanes by HPLC. Journal of Biomedical Materials Research, 18(8), 961-968. doi:10.1002/jbm.820180810
Takahara, A., Tashita, J., Kajiyama, T., Takayanagi, M., & MacKnight, W. J. (1985). Microphase separated structure and blood compatibility of segmented poly(urethaneureas) with different diamines in the hard segment. Polymer, 26(7), 978-986. doi:10.1016/0032-3861(85)90217-4
O’Sickey, M. J., Lawrey, B. D., & Wilkes, G. L. (2002). Structure-property relationships of poly(urethane urea)s with ultra-low monol content poly(propylene glycol) soft segments. I. Influence of soft segment molecular weight and hard segment content. Journal of Applied Polymer Science, 84(2), 229-243. doi:10.1002/app.10168
Pegoretti, A., Fambri, L., Penati, A., & Kolarik, J. (1998). Hydrolytic resistance of model poly(ether urethane ureas) and poly(ester urethane ureas). Journal of Applied Polymer Science, 70(3), 577-586. doi:10.1002/(sici)1097-4628(19981017)70:3<577::aid-app20>3.0.co;2-x
Labow, R. S., Erfle, D. J., & Santerre, J. P. (1996). Elastase-induced hydrolysis of synthetic solid substrates: poly(ester-urea-urethane) and poly(ether-urea-urethane). Biomaterials, 17(24), 2381-2388. doi:10.1016/s0142-9612(96)00088-9
Loh, X. J., Tan, K. K., Li, X., & Li, J. (2006). The in vitro hydrolysis of poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol). Biomaterials, 27(9), 1841-1850. doi:10.1016/j.biomaterials.2005.10.038
Hu, J.-L., & Mondal, S. (2005). Structural characterization and mass transfer properties of segmented polyurethane: influence of block length of hydrophilic segments. Polymer International, 54(5), 764-771. doi:10.1002/pi.1753
Tabor, C. W., & Tabor, H. (1984). Polyamines. Annual Review of Biochemistry, 53(1), 749-790. doi:10.1146/annurev.bi.53.070184.003533
Cooke, M., Leeves, N., & White, C. (2003). Time profile of putrescine, cadaverine, indole and skatole in human saliva. Archives of Oral Biology, 48(4), 323-327. doi:10.1016/s0003-9969(03)00015-3
Til, H. P., Falke, H. E., Prinsen, M. K., & Willems, M. I. (1997). Acute and subacute toxicity of tyramine, spermidine, spermine, putrescine and cadaverine in rats. Food and Chemical Toxicology, 35(3-4), 337-348. doi:10.1016/s0278-6915(97)00121-x
Bardocz , S. In Physiology of Polyamines Bachrach , U. Heimer , Y. M. CRC Press Boca Raton, FL, USA 1989 1 96
Jänne, J., Alhonen, L., Pietilä, M., & Keinänen, T. A. (2004). Genetic approaches to the cellular functions of polyamines in mammals. European Journal of Biochemistry, 271(5), 877-894. doi:10.1111/j.1432-1033.2004.04009.x
Luo, Wang, & Ying. (1997). Hydrogen-Bonding Properties of Segmented Polyether Poly(urethane urea) Copolymer. Macromolecules, 30(15), 4405-4409. doi:10.1021/ma951386e
Escobar Ivirico, J. L., Salmerón Sánchez, M., Sabater i Serra, R., Meseguer Dueñas, J. M., Gómez Ribelles, J. L., & Monleón Pradas, M. (2006). Structure and Properties of Poly(ɛ-caprolactone) Networks with Modulated Water Uptake. Macromolecular Chemistry and Physics, 207(23), 2195-2205. doi:10.1002/macp.200600399
Sabater i Serra, R., Escobar Ivirico, J. L., Meseguer Dueñas, J. M., Andrio Balado, A., Gómez Ribelles, J. L., & Salmerón Sánchez, M. (2007). Dielectric relaxation spectrum of poly (ε-caprolactone) networks hydrophilized by copolymerization with 2-hydroxyethyl acrylate. The European Physical Journal E, 22(4), 293-302. doi:10.1140/epje/e2007-00036-7
Marchant, R. E., Zhao, Q., Anderson, J. M., & Hiltner, A. (1987). Degradation of a poly(ether urethane urea) elastomer: infra-red and XPS studies. Polymer, 28(12), 2032-2039. doi:10.1016/0032-3861(87)90037-1
Kajiyama, T., & MacKnight, W. J. (1969). Low-Temperature Relaxations in Polyurethans. Macromolecules, 2(3), 254-261. doi:10.1021/ma60009a009
Van Bogart, J. W. C., Gibson, P. E., & Cooper, S. L. (1983). Structure-property relationships in polycaprolactone-polyurethanes. Journal of Polymer Science: Polymer Physics Edition, 21(1), 65-95. doi:10.1002/pol.1983.180210106
Ning, L., De-Ning, W., & Sheng-Kang, Y. (1996). Crystallinity and hydrogen bonding of hard segments in segmented poly(urethane urea) copolymers. Polymer, 37(16), 3577-3583. doi:10.1016/0032-3861(96)00166-8
Vatalis, A. ., Delides, C. ., Georgoussis, G., Kyritsis, A., Grigorieva, O. ., Sergeeva, L. ., … Pissis, P. (2001). Characterization of thermoplastic interpenetrating polymer networks by various thermal analysis techniques. Thermochimica Acta, 371(1-2), 87-93. doi:10.1016/s0040-6031(01)00420-8
Cheam, T. C., & Krimm, S. (1986). Vibrational Properties of the peptide NH bond as a function of hydrogen-bond geometry: an ab initio study. Journal of Molecular Structure, 146, 175-189. doi:10.1016/0022-2860(86)80291-5
[-]