- -

Segmental Poly(urethane-urea) elastomers based on polycaporlactone: structure and porperties

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Segmental Poly(urethane-urea) elastomers based on polycaporlactone: structure and porperties

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author May Hernandez, Luis Humberto es_ES
dc.contributor.author Hernandez Sanchez, Fernando es_ES
dc.contributor.author Gómez Ribelles, José Luís es_ES
dc.contributor.author Sabater i Serra, Roser es_ES
dc.date.accessioned 2016-05-17T06:17:11Z
dc.date.available 2016-05-17T06:17:11Z
dc.date.issued 2011
dc.identifier.issn 0021-8995
dc.identifier.uri http://hdl.handle.net/10251/64144
dc.description.abstract A series of segmented poly(urethane-urea) polymers have been synthesized varying the hard segments content, based on the combination of polycaprolactone diol and aliphatic diisocyanate (Bis(4-isocyanatocyclohexyl)methane), using diamine (1,4-Butylenediamine) as the chain extender. The microstructure and properties of the material highly depend on the hard segments content (from 14 to 40%). These PUUs with hard segment content above 23% have elastomeric behaviors that allow high recoverable deformation. The chemical structure and hydrogen bonding interactions were studied using FTIR and atomic force microscopy, which revealed phase separation that was also confirmed by DSC, dynamic-mechanical, and dielectric spectroscopy. © 2010 Wiley Periodicals, Inc. es_ES
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Journal of Applied Polymer Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Block copolymers es_ES
dc.subject Elastomers es_ES
dc.subject Phase separation es_ES
dc.subject Poly(urethane-urea) es_ES
dc.subject Polycaprolactone es_ES
dc.subject Aliphatic diisocyanate es_ES
dc.subject Chain extenders es_ES
dc.subject Chemical structure es_ES
dc.subject Elastomeric behavior es_ES
dc.subject FTIR es_ES
dc.subject Hard segments es_ES
dc.subject Hydrogen bonding interactions es_ES
dc.subject Microstructure and properties es_ES
dc.subject Polycaprolactone diols es_ES
dc.subject Structure and properties es_ES
dc.subject Atomic force microscopy es_ES
dc.subject Atomic spectroscopy es_ES
dc.subject Copolymerization es_ES
dc.subject Hydrogen bonds es_ES
dc.subject Metabolism es_ES
dc.subject Methane es_ES
dc.subject Plastics es_ES
dc.subject Urea es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Segmental Poly(urethane-urea) elastomers based on polycaporlactone: structure and porperties es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/app.32929
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica es_ES
dc.description.bibliographicCitation May Hernandez, LH.; Hernandez Sanchez, F.; Gómez Ribelles, JL.; Sabater I Serra, R. (2011). Segmental Poly(urethane-urea) elastomers based on polycaporlactone: structure and porperties. Journal of Applied Polymer Science. 119(4):2093-2104. doi:10.1002/app.32929 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/app.32929 es_ES
dc.description.upvformatpinicio 2093 es_ES
dc.description.upvformatpfin 2104 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 119 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 206847 es_ES
dc.identifier.eissn 1097-4628
dc.description.references Cooper, J. A., Lu, H. H., Ko, F. K., Freeman, J. W., & Laurencin, C. T. (2005). Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials, 26(13), 1523-1532. doi:10.1016/j.biomaterials.2004.05.014 es_ES
dc.description.references Liljensten, E., Gisselfält, K., Edberg, B., Bertilsson, H., Flodin, P., Nilsson, A., … Peterson, L. (2002). Journal of Materials Science: Materials in Medicine, 13(4), 351-359. doi:10.1023/a:1014380332762 es_ES
dc.description.references Spaans, C. ., Belgraver, V. ., Rienstra, O., de Groot, J. ., Veth, R. P. ., & Pennings, A. . (2000). Solvent-free fabrication of micro-porous polyurethane amide and polyurethane-urea scaffolds for repair and replacement of the knee-joint meniscus. Biomaterials, 21(23), 2453-2460. doi:10.1016/s0142-9612(00)00113-7 es_ES
dc.description.references Elema, H., de Groot, J. H., Nijenhuis, A. J., Pennings, A. J., Veth, R. P. H., Klompmaker, J., & Jansen, H. W. B. (1990). Use of porous biodegradable polymer implants in meniscus reconstruction. 2) Biological evaluation of porous biodegradable polymer implants in menisci. Colloid and Polymer Science, 268(12), 1082-1088. doi:10.1007/bf01410673 es_ES
dc.description.references Bensaı̈d, W., Triffitt, J. ., Blanchat, C., Oudina, K., Sedel, L., & Petite, H. (2003). A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials, 24(14), 2497-2502. doi:10.1016/s0142-9612(02)00618-x es_ES
dc.description.references Seymour, R. W., Estes, G. M., & Cooper, S. L. (1970). Infrared Studies of Segmented Polyurethan Elastomers. I. Hydrogen Bonding. Macromolecules, 3(5), 579-583. doi:10.1021/ma60017a021 es_ES
dc.description.references Bogdanov, B., Toncheva, V., Schacht, E., Finelli, L., Sarti, B., & Scandola, M. (1999). Physical properties of poly(ester-urethanes) prepared from different molar mass polycaprolactone-diols. Polymer, 40(11), 3171-3182. doi:10.1016/s0032-3861(98)00552-7 es_ES
dc.description.references Pêgo, A. P., Poot, A. A., Grijpma, D. W., & Feijen, J. (2003). Biodegradable elastomeric scaffolds for soft tissue engineering. Journal of Controlled Release, 87(1-3), 69-79. doi:10.1016/s0168-3659(02)00351-6 es_ES
dc.description.references Guan, J., & Wagner, W. R. (2005). Synthesis, Characterization and Cytocompatibility of Polyurethaneurea Elastomers with Designed Elastase Sensitivity. Biomacromolecules, 6(5), 2833-2842. doi:10.1021/bm0503322 es_ES
dc.description.references Guan, J., Stankus, J. J., & Wagner, W. R. (2007). Biodegradable elastomeric scaffolds with basic fibroblast growth factor release. Journal of Controlled Release, 120(1-2), 70-78. doi:10.1016/j.jconrel.2007.04.002 es_ES
dc.description.references Guan, J., Sacks, M. S., Beckman, E. J., & Wagner, W. R. (2004). Biodegradable poly(ether ester urethane)urea elastomers based on poly(ether ester) triblock copolymers and putrescine: synthesis, characterization and cytocompatibility. Biomaterials, 25(1), 85-96. doi:10.1016/s0142-9612(03)00476-9 es_ES
dc.description.references Mazzu, A. L., & Smith, C. P. (1984). Determination of extractable methylene dianiline in thermoplastic polyurethanes by HPLC. Journal of Biomedical Materials Research, 18(8), 961-968. doi:10.1002/jbm.820180810 es_ES
dc.description.references Takahara, A., Tashita, J., Kajiyama, T., Takayanagi, M., & MacKnight, W. J. (1985). Microphase separated structure and blood compatibility of segmented poly(urethaneureas) with different diamines in the hard segment. Polymer, 26(7), 978-986. doi:10.1016/0032-3861(85)90217-4 es_ES
dc.description.references O’Sickey, M. J., Lawrey, B. D., & Wilkes, G. L. (2002). Structure-property relationships of poly(urethane urea)s with ultra-low monol content poly(propylene glycol) soft segments. I. Influence of soft segment molecular weight and hard segment content. Journal of Applied Polymer Science, 84(2), 229-243. doi:10.1002/app.10168 es_ES
dc.description.references Pegoretti, A., Fambri, L., Penati, A., & Kolarik, J. (1998). Hydrolytic resistance of model poly(ether urethane ureas) and poly(ester urethane ureas). Journal of Applied Polymer Science, 70(3), 577-586. doi:10.1002/(sici)1097-4628(19981017)70:3<577::aid-app20>3.0.co;2-x es_ES
dc.description.references Labow, R. S., Erfle, D. J., & Santerre, J. P. (1996). Elastase-induced hydrolysis of synthetic solid substrates: poly(ester-urea-urethane) and poly(ether-urea-urethane). Biomaterials, 17(24), 2381-2388. doi:10.1016/s0142-9612(96)00088-9 es_ES
dc.description.references Loh, X. J., Tan, K. K., Li, X., & Li, J. (2006). The in vitro hydrolysis of poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol). Biomaterials, 27(9), 1841-1850. doi:10.1016/j.biomaterials.2005.10.038 es_ES
dc.description.references Hu, J.-L., & Mondal, S. (2005). Structural characterization and mass transfer properties of segmented polyurethane: influence of block length of hydrophilic segments. Polymer International, 54(5), 764-771. doi:10.1002/pi.1753 es_ES
dc.description.references Tabor, C. W., & Tabor, H. (1984). Polyamines. Annual Review of Biochemistry, 53(1), 749-790. doi:10.1146/annurev.bi.53.070184.003533 es_ES
dc.description.references Cooke, M., Leeves, N., & White, C. (2003). Time profile of putrescine, cadaverine, indole and skatole in human saliva. Archives of Oral Biology, 48(4), 323-327. doi:10.1016/s0003-9969(03)00015-3 es_ES
dc.description.references Til, H. P., Falke, H. E., Prinsen, M. K., & Willems, M. I. (1997). Acute and subacute toxicity of tyramine, spermidine, spermine, putrescine and cadaverine in rats. Food and Chemical Toxicology, 35(3-4), 337-348. doi:10.1016/s0278-6915(97)00121-x es_ES
dc.description.references Bardocz , S. In Physiology of Polyamines Bachrach , U. Heimer , Y. M. CRC Press Boca Raton, FL, USA 1989 1 96 es_ES
dc.description.references Jänne, J., Alhonen, L., Pietilä, M., & Keinänen, T. A. (2004). Genetic approaches to the cellular functions of polyamines in mammals. European Journal of Biochemistry, 271(5), 877-894. doi:10.1111/j.1432-1033.2004.04009.x es_ES
dc.description.references Luo, Wang, & Ying. (1997). Hydrogen-Bonding Properties of Segmented Polyether Poly(urethane urea) Copolymer. Macromolecules, 30(15), 4405-4409. doi:10.1021/ma951386e es_ES
dc.description.references Escobar Ivirico, J. L., Salmerón Sánchez, M., Sabater i Serra, R., Meseguer Dueñas, J. M., Gómez Ribelles, J. L., & Monleón Pradas, M. (2006). Structure and Properties of Poly(ɛ-caprolactone) Networks with Modulated Water Uptake. Macromolecular Chemistry and Physics, 207(23), 2195-2205. doi:10.1002/macp.200600399 es_ES
dc.description.references Sabater i Serra, R., Escobar Ivirico, J. L., Meseguer Dueñas, J. M., Andrio Balado, A., Gómez Ribelles, J. L., & Salmerón Sánchez, M. (2007). Dielectric relaxation spectrum of poly (ε-caprolactone) networks hydrophilized by copolymerization with 2-hydroxyethyl acrylate. The European Physical Journal E, 22(4), 293-302. doi:10.1140/epje/e2007-00036-7 es_ES
dc.description.references Marchant, R. E., Zhao, Q., Anderson, J. M., & Hiltner, A. (1987). Degradation of a poly(ether urethane urea) elastomer: infra-red and XPS studies. Polymer, 28(12), 2032-2039. doi:10.1016/0032-3861(87)90037-1 es_ES
dc.description.references Kajiyama, T., & MacKnight, W. J. (1969). Low-Temperature Relaxations in Polyurethans. Macromolecules, 2(3), 254-261. doi:10.1021/ma60009a009 es_ES
dc.description.references Van Bogart, J. W. C., Gibson, P. E., & Cooper, S. L. (1983). Structure-property relationships in polycaprolactone-polyurethanes. Journal of Polymer Science: Polymer Physics Edition, 21(1), 65-95. doi:10.1002/pol.1983.180210106 es_ES
dc.description.references Ning, L., De-Ning, W., & Sheng-Kang, Y. (1996). Crystallinity and hydrogen bonding of hard segments in segmented poly(urethane urea) copolymers. Polymer, 37(16), 3577-3583. doi:10.1016/0032-3861(96)00166-8 es_ES
dc.description.references Vatalis, A. ., Delides, C. ., Georgoussis, G., Kyritsis, A., Grigorieva, O. ., Sergeeva, L. ., … Pissis, P. (2001). Characterization of thermoplastic interpenetrating polymer networks by various thermal analysis techniques. Thermochimica Acta, 371(1-2), 87-93. doi:10.1016/s0040-6031(01)00420-8 es_ES
dc.description.references Cheam, T. C., & Krimm, S. (1986). Vibrational Properties of the peptide NH bond as a function of hydrogen-bond geometry: an ab initio study. Journal of Molecular Structure, 146, 175-189. doi:10.1016/0022-2860(86)80291-5 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem