Mostrar el registro sencillo del ítem
dc.contributor.author | May Hernandez, Luis Humberto | es_ES |
dc.contributor.author | Hernandez Sanchez, Fernando | es_ES |
dc.contributor.author | Gómez Ribelles, José Luís | es_ES |
dc.contributor.author | Sabater i Serra, Roser | es_ES |
dc.date.accessioned | 2016-05-17T06:17:11Z | |
dc.date.available | 2016-05-17T06:17:11Z | |
dc.date.issued | 2011 | |
dc.identifier.issn | 0021-8995 | |
dc.identifier.uri | http://hdl.handle.net/10251/64144 | |
dc.description.abstract | A series of segmented poly(urethane-urea) polymers have been synthesized varying the hard segments content, based on the combination of polycaprolactone diol and aliphatic diisocyanate (Bis(4-isocyanatocyclohexyl)methane), using diamine (1,4-Butylenediamine) as the chain extender. The microstructure and properties of the material highly depend on the hard segments content (from 14 to 40%). These PUUs with hard segment content above 23% have elastomeric behaviors that allow high recoverable deformation. The chemical structure and hydrogen bonding interactions were studied using FTIR and atomic force microscopy, which revealed phase separation that was also confirmed by DSC, dynamic-mechanical, and dielectric spectroscopy. © 2010 Wiley Periodicals, Inc. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Wiley | es_ES |
dc.relation.ispartof | Journal of Applied Polymer Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Block copolymers | es_ES |
dc.subject | Elastomers | es_ES |
dc.subject | Phase separation | es_ES |
dc.subject | Poly(urethane-urea) | es_ES |
dc.subject | Polycaprolactone | es_ES |
dc.subject | Aliphatic diisocyanate | es_ES |
dc.subject | Chain extenders | es_ES |
dc.subject | Chemical structure | es_ES |
dc.subject | Elastomeric behavior | es_ES |
dc.subject | FTIR | es_ES |
dc.subject | Hard segments | es_ES |
dc.subject | Hydrogen bonding interactions | es_ES |
dc.subject | Microstructure and properties | es_ES |
dc.subject | Polycaprolactone diols | es_ES |
dc.subject | Structure and properties | es_ES |
dc.subject | Atomic force microscopy | es_ES |
dc.subject | Atomic spectroscopy | es_ES |
dc.subject | Copolymerization | es_ES |
dc.subject | Hydrogen bonds | es_ES |
dc.subject | Metabolism | es_ES |
dc.subject | Methane | es_ES |
dc.subject | Plastics | es_ES |
dc.subject | Urea | es_ES |
dc.subject.classification | INGENIERIA ELECTRICA | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Segmental Poly(urethane-urea) elastomers based on polycaporlactone: structure and porperties | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/app.32929 | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica | es_ES |
dc.description.bibliographicCitation | May Hernandez, LH.; Hernandez Sanchez, F.; Gómez Ribelles, JL.; Sabater I Serra, R. (2011). Segmental Poly(urethane-urea) elastomers based on polycaporlactone: structure and porperties. Journal of Applied Polymer Science. 119(4):2093-2104. doi:10.1002/app.32929 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/app.32929 | es_ES |
dc.description.upvformatpinicio | 2093 | es_ES |
dc.description.upvformatpfin | 2104 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 119 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.senia | 206847 | es_ES |
dc.identifier.eissn | 1097-4628 | |
dc.description.references | Cooper, J. A., Lu, H. H., Ko, F. K., Freeman, J. W., & Laurencin, C. T. (2005). Fiber-based tissue-engineered scaffold for ligament replacement: design considerations and in vitro evaluation. Biomaterials, 26(13), 1523-1532. doi:10.1016/j.biomaterials.2004.05.014 | es_ES |
dc.description.references | Liljensten, E., Gisselfält, K., Edberg, B., Bertilsson, H., Flodin, P., Nilsson, A., … Peterson, L. (2002). Journal of Materials Science: Materials in Medicine, 13(4), 351-359. doi:10.1023/a:1014380332762 | es_ES |
dc.description.references | Spaans, C. ., Belgraver, V. ., Rienstra, O., de Groot, J. ., Veth, R. P. ., & Pennings, A. . (2000). Solvent-free fabrication of micro-porous polyurethane amide and polyurethane-urea scaffolds for repair and replacement of the knee-joint meniscus. Biomaterials, 21(23), 2453-2460. doi:10.1016/s0142-9612(00)00113-7 | es_ES |
dc.description.references | Elema, H., de Groot, J. H., Nijenhuis, A. J., Pennings, A. J., Veth, R. P. H., Klompmaker, J., & Jansen, H. W. B. (1990). Use of porous biodegradable polymer implants in meniscus reconstruction. 2) Biological evaluation of porous biodegradable polymer implants in menisci. Colloid and Polymer Science, 268(12), 1082-1088. doi:10.1007/bf01410673 | es_ES |
dc.description.references | Bensaı̈d, W., Triffitt, J. ., Blanchat, C., Oudina, K., Sedel, L., & Petite, H. (2003). A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials, 24(14), 2497-2502. doi:10.1016/s0142-9612(02)00618-x | es_ES |
dc.description.references | Seymour, R. W., Estes, G. M., & Cooper, S. L. (1970). Infrared Studies of Segmented Polyurethan Elastomers. I. Hydrogen Bonding. Macromolecules, 3(5), 579-583. doi:10.1021/ma60017a021 | es_ES |
dc.description.references | Bogdanov, B., Toncheva, V., Schacht, E., Finelli, L., Sarti, B., & Scandola, M. (1999). Physical properties of poly(ester-urethanes) prepared from different molar mass polycaprolactone-diols. Polymer, 40(11), 3171-3182. doi:10.1016/s0032-3861(98)00552-7 | es_ES |
dc.description.references | Pêgo, A. P., Poot, A. A., Grijpma, D. W., & Feijen, J. (2003). Biodegradable elastomeric scaffolds for soft tissue engineering. Journal of Controlled Release, 87(1-3), 69-79. doi:10.1016/s0168-3659(02)00351-6 | es_ES |
dc.description.references | Guan, J., & Wagner, W. R. (2005). Synthesis, Characterization and Cytocompatibility of Polyurethaneurea Elastomers with Designed Elastase Sensitivity. Biomacromolecules, 6(5), 2833-2842. doi:10.1021/bm0503322 | es_ES |
dc.description.references | Guan, J., Stankus, J. J., & Wagner, W. R. (2007). Biodegradable elastomeric scaffolds with basic fibroblast growth factor release. Journal of Controlled Release, 120(1-2), 70-78. doi:10.1016/j.jconrel.2007.04.002 | es_ES |
dc.description.references | Guan, J., Sacks, M. S., Beckman, E. J., & Wagner, W. R. (2004). Biodegradable poly(ether ester urethane)urea elastomers based on poly(ether ester) triblock copolymers and putrescine: synthesis, characterization and cytocompatibility. Biomaterials, 25(1), 85-96. doi:10.1016/s0142-9612(03)00476-9 | es_ES |
dc.description.references | Mazzu, A. L., & Smith, C. P. (1984). Determination of extractable methylene dianiline in thermoplastic polyurethanes by HPLC. Journal of Biomedical Materials Research, 18(8), 961-968. doi:10.1002/jbm.820180810 | es_ES |
dc.description.references | Takahara, A., Tashita, J., Kajiyama, T., Takayanagi, M., & MacKnight, W. J. (1985). Microphase separated structure and blood compatibility of segmented poly(urethaneureas) with different diamines in the hard segment. Polymer, 26(7), 978-986. doi:10.1016/0032-3861(85)90217-4 | es_ES |
dc.description.references | O’Sickey, M. J., Lawrey, B. D., & Wilkes, G. L. (2002). Structure-property relationships of poly(urethane urea)s with ultra-low monol content poly(propylene glycol) soft segments. I. Influence of soft segment molecular weight and hard segment content. Journal of Applied Polymer Science, 84(2), 229-243. doi:10.1002/app.10168 | es_ES |
dc.description.references | Pegoretti, A., Fambri, L., Penati, A., & Kolarik, J. (1998). Hydrolytic resistance of model poly(ether urethane ureas) and poly(ester urethane ureas). Journal of Applied Polymer Science, 70(3), 577-586. doi:10.1002/(sici)1097-4628(19981017)70:3<577::aid-app20>3.0.co;2-x | es_ES |
dc.description.references | Labow, R. S., Erfle, D. J., & Santerre, J. P. (1996). Elastase-induced hydrolysis of synthetic solid substrates: poly(ester-urea-urethane) and poly(ether-urea-urethane). Biomaterials, 17(24), 2381-2388. doi:10.1016/s0142-9612(96)00088-9 | es_ES |
dc.description.references | Loh, X. J., Tan, K. K., Li, X., & Li, J. (2006). The in vitro hydrolysis of poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol). Biomaterials, 27(9), 1841-1850. doi:10.1016/j.biomaterials.2005.10.038 | es_ES |
dc.description.references | Hu, J.-L., & Mondal, S. (2005). Structural characterization and mass transfer properties of segmented polyurethane: influence of block length of hydrophilic segments. Polymer International, 54(5), 764-771. doi:10.1002/pi.1753 | es_ES |
dc.description.references | Tabor, C. W., & Tabor, H. (1984). Polyamines. Annual Review of Biochemistry, 53(1), 749-790. doi:10.1146/annurev.bi.53.070184.003533 | es_ES |
dc.description.references | Cooke, M., Leeves, N., & White, C. (2003). Time profile of putrescine, cadaverine, indole and skatole in human saliva. Archives of Oral Biology, 48(4), 323-327. doi:10.1016/s0003-9969(03)00015-3 | es_ES |
dc.description.references | Til, H. P., Falke, H. E., Prinsen, M. K., & Willems, M. I. (1997). Acute and subacute toxicity of tyramine, spermidine, spermine, putrescine and cadaverine in rats. Food and Chemical Toxicology, 35(3-4), 337-348. doi:10.1016/s0278-6915(97)00121-x | es_ES |
dc.description.references | Bardocz , S. In Physiology of Polyamines Bachrach , U. Heimer , Y. M. CRC Press Boca Raton, FL, USA 1989 1 96 | es_ES |
dc.description.references | Jänne, J., Alhonen, L., Pietilä, M., & Keinänen, T. A. (2004). Genetic approaches to the cellular functions of polyamines in mammals. European Journal of Biochemistry, 271(5), 877-894. doi:10.1111/j.1432-1033.2004.04009.x | es_ES |
dc.description.references | Luo, Wang, & Ying. (1997). Hydrogen-Bonding Properties of Segmented Polyether Poly(urethane urea) Copolymer. Macromolecules, 30(15), 4405-4409. doi:10.1021/ma951386e | es_ES |
dc.description.references | Escobar Ivirico, J. L., Salmerón Sánchez, M., Sabater i Serra, R., Meseguer Dueñas, J. M., Gómez Ribelles, J. L., & Monleón Pradas, M. (2006). Structure and Properties of Poly(ɛ-caprolactone) Networks with Modulated Water Uptake. Macromolecular Chemistry and Physics, 207(23), 2195-2205. doi:10.1002/macp.200600399 | es_ES |
dc.description.references | Sabater i Serra, R., Escobar Ivirico, J. L., Meseguer Dueñas, J. M., Andrio Balado, A., Gómez Ribelles, J. L., & Salmerón Sánchez, M. (2007). Dielectric relaxation spectrum of poly (ε-caprolactone) networks hydrophilized by copolymerization with 2-hydroxyethyl acrylate. The European Physical Journal E, 22(4), 293-302. doi:10.1140/epje/e2007-00036-7 | es_ES |
dc.description.references | Marchant, R. E., Zhao, Q., Anderson, J. M., & Hiltner, A. (1987). Degradation of a poly(ether urethane urea) elastomer: infra-red and XPS studies. Polymer, 28(12), 2032-2039. doi:10.1016/0032-3861(87)90037-1 | es_ES |
dc.description.references | Kajiyama, T., & MacKnight, W. J. (1969). Low-Temperature Relaxations in Polyurethans. Macromolecules, 2(3), 254-261. doi:10.1021/ma60009a009 | es_ES |
dc.description.references | Van Bogart, J. W. C., Gibson, P. E., & Cooper, S. L. (1983). Structure-property relationships in polycaprolactone-polyurethanes. Journal of Polymer Science: Polymer Physics Edition, 21(1), 65-95. doi:10.1002/pol.1983.180210106 | es_ES |
dc.description.references | Ning, L., De-Ning, W., & Sheng-Kang, Y. (1996). Crystallinity and hydrogen bonding of hard segments in segmented poly(urethane urea) copolymers. Polymer, 37(16), 3577-3583. doi:10.1016/0032-3861(96)00166-8 | es_ES |
dc.description.references | Vatalis, A. ., Delides, C. ., Georgoussis, G., Kyritsis, A., Grigorieva, O. ., Sergeeva, L. ., … Pissis, P. (2001). Characterization of thermoplastic interpenetrating polymer networks by various thermal analysis techniques. Thermochimica Acta, 371(1-2), 87-93. doi:10.1016/s0040-6031(01)00420-8 | es_ES |
dc.description.references | Cheam, T. C., & Krimm, S. (1986). Vibrational Properties of the peptide NH bond as a function of hydrogen-bond geometry: an ab initio study. Journal of Molecular Structure, 146, 175-189. doi:10.1016/0022-2860(86)80291-5 | es_ES |