- -

Three-Dimensional Scaffolds as a Model System for Neural and Endothelial In Vitro Culture

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Three-Dimensional Scaffolds as a Model System for Neural and Endothelial In Vitro Culture

Mostrar el registro completo del ítem

Dias Veiga, DA.; Costa Antunes, JI.; García Gómez, R.; Mano, JF.; Gómez Ribelles, JL.; Miguel Soria, J. (2011). Three-Dimensional Scaffolds as a Model System for Neural and Endothelial In Vitro Culture. Journal of Biomaterials Applications. 26(3):293-310. https://doi.org/10.1177/0885328210365005

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/64168

Ficheros en el ítem

Metadatos del ítem

Título: Three-Dimensional Scaffolds as a Model System for Neural and Endothelial In Vitro Culture
Autor: Dias Veiga, Diana Alexandra Costa Antunes, Joana Isabel García Gómez, Roberto Mano, Joao F Gómez Ribelles, José Luís Miguel Soria, Jose
Entidad UPV: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Fecha difusión:
Resumen:
Biomaterials based on the hydrophobic homopolymer poly(ethyl acrylate), PEA, and its copolymers with hydroxyethyl acrylate, p(EA-co-HEA) and methacrylic acid, p(EA-co-MAAc) were prepared as polymeric scaffolds with ...[+]
Palabras clave: cell culture , polymeric scaffolds , neural stem cells , biomaterials , endothelial cells
Derechos de uso: Cerrado
Fuente:
Journal of Biomaterials Applications. (issn: 0885-3282 ) (eissn: 1530-8022 )
DOI: 10.1177/0885328210365005
Editorial:
SAGE Publications
Versión del editor: http://dx.doi.org/10.1177/0885328210365005
Código del Proyecto:
info:eu-repo/grantAgreement/MEC//MAT2007-66759-C03-01/ES/NUEVOS SUBSTRATOS POLIMERICOS BIORREABSORBIBLES PARA LA REGENERACION DEL CARTILAGO ARTICULAR/
info:eu-repo/grantAgreement/Universidad CEU Cardenal Herrera//PRCEU-UCH%2FCOP01%2F08/
info:eu-repo/grantAgreement/Universidad CEU Cardenal Herrera//PRCEU-UCH16%2F09/
Agradecimientos:
The support of the Spanish Ministry of Science through Project No. MAT2007-66759-C03-01 (including the FEDER financial support) is acknowledged. Copernicus-Santander (PRCEU-UCH/COP01/08) Universidad CEU- Cardenal Herrera. ...[+]
Tipo: Artículo

References

Lois, C., & Alvarez-Buylla, A. (1994). Long-distance neuronal migration in the adult mammalian brain. Science, 264(5162), 1145-1148. doi:10.1126/science.8178174

Garc�a-Verdugo, J. M., Doetsch, F., Wichterle, H., Lim, D. A., & Alvarez-Buylla, A. (1998). Architecture and cell types of the adult subventricular zone: In search of the stem cells. Journal of Neurobiology, 36(2), 234-248. doi:10.1002/(sici)1097-4695(199808)36:2<234::aid-neu10>3.0.co;2-e

Doetsch, F., Caillé, I., Lim, D. A., García-Verdugo, J. M., & Alvarez-Buylla, A. (1999). Subventricular Zone Astrocytes Are Neural Stem Cells in the Adult Mammalian Brain. Cell, 97(6), 703-716. doi:10.1016/s0092-8674(00)80783-7 [+]
Lois, C., & Alvarez-Buylla, A. (1994). Long-distance neuronal migration in the adult mammalian brain. Science, 264(5162), 1145-1148. doi:10.1126/science.8178174

Garc�a-Verdugo, J. M., Doetsch, F., Wichterle, H., Lim, D. A., & Alvarez-Buylla, A. (1998). Architecture and cell types of the adult subventricular zone: In search of the stem cells. Journal of Neurobiology, 36(2), 234-248. doi:10.1002/(sici)1097-4695(199808)36:2<234::aid-neu10>3.0.co;2-e

Doetsch, F., Caillé, I., Lim, D. A., García-Verdugo, J. M., & Alvarez-Buylla, A. (1999). Subventricular Zone Astrocytes Are Neural Stem Cells in the Adult Mammalian Brain. Cell, 97(6), 703-716. doi:10.1016/s0092-8674(00)80783-7

Gage, F. H. (2000). Mammalian Neural Stem Cells. Science, 287(5457), 1433-1438. doi:10.1126/science.287.5457.1433

Palmer, T. D., Willhoite, A. R., & Gage, F. H. (2000). Vascular niche for adult hippocampal neurogenesis. The Journal of Comparative Neurology, 425(4), 479-494. doi:10.1002/1096-9861(20001002)425:4<479::aid-cne2>3.0.co;2-3

Doetsch, F. (2003). A niche for adult neural stem cells. Current Opinion in Genetics & Development, 13(5), 543-550. doi:10.1016/j.gde.2003.08.012

Semino, C. E., Kasahara, J., Hayashi, Y., & Zhang, S. (2004). Entrapment of Migrating Hippocampal Neural Cells in Three-Dimensional Peptide Nanofiber Scaffold. Tissue Engineering, 10(3-4), 643-655. doi:10.1089/107632704323061997

Louissaint, A., Rao, S., Leventhal, C., & Goldman, S. A. (2002). Coordinated Interaction of Neurogenesis and Angiogenesis in the Adult Songbird Brain. Neuron, 34(6), 945-960. doi:10.1016/s0896-6273(02)00722-5

Li, Q., Ford, M. C., Lavik, E. B., & Madri, J. A. (2006). Modeling the neurovascular niche: VEGF- and BDNF-mediated cross-talk between neural stem cells and endothelial cells: An in vitro study. Journal of Neuroscience Research, 84(8), 1656-1668. doi:10.1002/jnr.21087

Milner, R. (2007). A novel three-dimensional system to study interactions between endothelial cells and neural cells of the developing central nervous system. BMC Neuroscience, 8(1). doi:10.1186/1471-2202-8-3

Hayashi, Y., Nomura, M., Yamagishi, S.-I., Harada, S.-I., Yamashita, J., & Yamamoto, H. (1997). Induction of various blood-brain barrier properties in non-neural endothelial cells by close apposition to co-cultured astrocytes. Glia, 19(1), 13-26. doi:10.1002/(sici)1098-1136(199701)19:1<13::aid-glia2>3.0.co;2-b

Lim, J. C., Wolpaw, A. J., Caldwell, M. A., Hladky, S. B., & Barrand, M. A. (2007). Neural precursor cell influences on blood–brain barrier characteristics in rat brain endothelial cells. Brain Research, 1159, 67-76. doi:10.1016/j.brainres.2007.05.032

Tontsch, U., & Bauer, H.-C. (1991). Glial cells and neurons induce blood-brain barrier related enzymes in cultured cerebral endothelial cells. Brain Research, 539(2), 247-253. doi:10.1016/0006-8993(91)91628-e

Weidenfeller, C., Svendsen, C. N., & Shusta, E. V. (2007). Differentiating embryonic neural progenitor cells induce blood?brain barrier properties. Journal of Neurochemistry, 101(2), 555-565. doi:10.1111/j.1471-4159.2006.04394.x

Su, L., Zhao, B., Lv, X., Zhao, J., Zhang, S., & Miao, J. (2007). Safrole oxide is a useful tool for investigating the effect of apoptosis in vascular endothelial cells on neural stem cell survival and differentiation in vitro. Bioorganic & Medicinal Chemistry Letters, 17(11), 3167-3171. doi:10.1016/j.bmcl.2007.03.032

Lowry, N., Goderie, S. K., Adamo, M., Lederman, P., Charniga, C., Gill, J., … Temple, S. (2008). Multipotent embryonic spinal cord stem cells expanded by endothelial factors and Shh/RA promote functional recovery after spinal cord injury. Experimental Neurology, 209(2), 510-522. doi:10.1016/j.expneurol.2007.09.031

Peretz, H., Talpalar, A. E., Vago, R., & Baranes, D. (2007). Superior Survival and Durability of Neurons and Astrocytes on 3-Dimensional Aragonite Biomatrices. Tissue Engineering, 13(3), 461-472. doi:10.1089/ten.2005.0522

Shany, B., Peretz, H., Blinder, P., Lichtenfeld, Y., Jeger, R., Vago, R., & Baranes, D. (2006). Aragonite Crystalline Biomatrices Support Astrocytic Tissue Formation in Vitro and in Vivo. Tissue Engineering, 12(7), 1763-1773. doi:10.1089/ten.2006.12.1763

Hayman, M. W., Smith, K. H., Cameron, N. R., & Przyborski, S. A. (2005). Growth of human stem cell-derived neurons on solid three-dimensional polymers. Journal of Biochemical and Biophysical Methods, 62(3), 231-240. doi:10.1016/j.jbbm.2004.12.001

Hayman, M. ., Smith, K. ., Cameron, N. ., & Przyborski, S. . (2004). Enhanced neurite outgrowth by human neurons grown on solid three-dimensional scaffolds. Biochemical and Biophysical Research Communications, 314(2), 483-488. doi:10.1016/j.bbrc.2003.12.135

Goldner, J. S., Bruder, J. M., Li, G., Gazzola, D., & Hoffman-Kim, D. (2006). Neurite bridging across micropatterned grooves. Biomaterials, 27(3), 460-472. doi:10.1016/j.biomaterials.2005.06.035

Willerth, S. M., Arendas, K. J., Gottlieb, D. I., & Sakiyama-Elbert, S. E. (2006). Optimization of fibrin scaffolds for differentiation of murine embryonic stem cells into neural lineage cells. Biomaterials, 27(36), 5990-6003. doi:10.1016/j.biomaterials.2006.07.036

Stevens, M. M. (2005). Exploring and Engineering the Cell Surface Interface. Science, 310(5751), 1135-1138. doi:10.1126/science.1106587

Luckenbill-Edds, L. (1997). Laminin and the mechanism of neuronal outgrowth. Brain Research Reviews, 23(1-2), 1-27. doi:10.1016/s0165-0173(96)00013-6

Holmes, T. C., de Lacalle, S., Su, X., Liu, G., Rich, A., & Zhang, S. (2000). Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proceedings of the National Academy of Sciences, 97(12), 6728-6733. doi:10.1073/pnas.97.12.6728

Diego, R. B., Olmedilla, M. P., Aroca, A. S., Ribelles, J. L. G., Pradas, M. M., Ferrer, G. G., & Sánchez, M. S. (2005). Acrylic scaffolds with interconnected spherical pores and controlled hydrophilicity for tissue engineering. Journal of Materials Science: Materials in Medicine, 16(8), 693-698. doi:10.1007/s10856-005-2604-7

Soria, J. M., Martínez Ramos, C., Bahamonde, O., García Cruz, D. M., Salmerón Sánchez, M., García Esparza, M. A., … Barcia, J. A. (2007). Influence of the substrate’s hydrophilicity on thein vitro Schwann cells viability. Journal of Biomedical Materials Research Part A, 83A(2), 463-470. doi:10.1002/jbm.a.31297

Martínez-Ramos, C., Lainez, S., Sancho, F., García Esparza, M. A., Planells-Cases, R., García Verdugo, J. M., … Soria, J. M. (2008). Differentiation of Postnatal Neural Stem Cells into Glia and Functional Neurons on Laminin-Coated Polymeric Substrates. Tissue Engineering Part A, 14(8), 1365-1375. doi:10.1089/ten.tea.2007.0295

Campillo-Fernandez, A. J., Pastor, S., Abad-Collado, M., Bataille, L., Gomez-Ribelles, J. L., Meseguer-Dueñas, J. M., … Ruiz-Moreno, J. M. (2007). Future Design of a New Keratoprosthesis. Physical and Biological Analysis of Polymeric Substrates for Epithelial Cell Growth. Biomacromolecules, 8(8), 2429-2436. doi:10.1021/bm0703012

Gao, C., Hu, X., Hong, Y., Guan, J., & Shen, J. (2003). Photografting of poly(hydroxylethyl acrylate) onto porous polyurethane scaffolds to improve their endothelial cell compatibility. Journal of Biomaterials Science, Polymer Edition, 14(9), 937-950. doi:10.1163/156856203322381429

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem