Mostrar el registro sencillo del ítem
dc.contributor.author | Dias Veiga, Diana Alexandra | es_ES |
dc.contributor.author | Costa Antunes, Joana Isabel | es_ES |
dc.contributor.author | García Gómez, Roberto | es_ES |
dc.contributor.author | Mano, Joao F | es_ES |
dc.contributor.author | Gómez Ribelles, José Luís | es_ES |
dc.contributor.author | Miguel Soria, Jose | es_ES |
dc.date.accessioned | 2016-05-17T07:13:58Z | |
dc.date.available | 2016-05-17T07:13:58Z | |
dc.date.issued | 2011-09 | |
dc.identifier.issn | 0885-3282 | |
dc.identifier.uri | http://hdl.handle.net/10251/64168 | |
dc.description.abstract | Biomaterials based on the hydrophobic homopolymer poly(ethyl acrylate), PEA, and its copolymers with hydroxyethyl acrylate, p(EA-co-HEA) and methacrylic acid, p(EA-co-MAAc) were prepared as polymeric scaffolds with interconnected pores of 90 microns and tested in vitro as culture substrates and compared for their impact on the differentiation of neural stem cells (NSC) obtained from the subventricular zone (SVZ) of postnatal rats and human endothelial cells (HUVEC). Immunocytochemical staining assay for specific markers show that p(EA-co-MAAc) scaffolds were suitable substrates to promote cell attachment and differentiation of adult NSC and HUVEC cells. | es_ES |
dc.description.sponsorship | The support of the Spanish Ministry of Science through Project No. MAT2007-66759-C03-01 (including the FEDER financial support) is acknowledged. Copernicus-Santander (PRCEU-UCH/COP01/08) Universidad CEU- Cardenal Herrera. Programa de ayudas a la Investigacion Universidad CEU- Cardenal Herrera (PRCEU-UCH16/09). Programa de ayudas a la Investigacion cientifica Ramon Areces (2009). SEM was performed under the technical guide of the Microscopy Service at the Universidad Politecnica de Valencia. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | SAGE Publications | es_ES |
dc.relation.ispartof | Journal of Biomaterials Applications | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | cell culture | es_ES |
dc.subject | polymeric scaffolds | es_ES |
dc.subject | neural stem cells | es_ES |
dc.subject | biomaterials | es_ES |
dc.subject | endothelial cells | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Three-Dimensional Scaffolds as a Model System for Neural and Endothelial In Vitro Culture | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1177/0885328210365005 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//MAT2007-66759-C03-01/ES/NUEVOS SUBSTRATOS POLIMERICOS BIORREABSORBIBLES PARA LA REGENERACION DEL CARTILAGO ARTICULAR/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Universidad CEU Cardenal Herrera//PRCEU-UCH%2FCOP01%2F08/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Universidad CEU Cardenal Herrera//PRCEU-UCH16%2F09/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.description.bibliographicCitation | Dias Veiga, DA.; Costa Antunes, JI.; García Gómez, R.; Mano, JF.; Gómez Ribelles, JL.; Miguel Soria, J. (2011). Three-Dimensional Scaffolds as a Model System for Neural and Endothelial In Vitro Culture. Journal of Biomaterials Applications. 26(3):293-310. https://doi.org/10.1177/0885328210365005 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1177/0885328210365005 | es_ES |
dc.description.upvformatpinicio | 293 | es_ES |
dc.description.upvformatpfin | 310 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 26 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.senia | 212282 | es_ES |
dc.identifier.eissn | 1530-8022 | |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.contributor.funder | Universidad CEU Cardenal Herrera | es_ES |
dc.contributor.funder | Fundación Ramón Areces | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | Lois, C., & Alvarez-Buylla, A. (1994). Long-distance neuronal migration in the adult mammalian brain. Science, 264(5162), 1145-1148. doi:10.1126/science.8178174 | es_ES |
dc.description.references | Garc�a-Verdugo, J. M., Doetsch, F., Wichterle, H., Lim, D. A., & Alvarez-Buylla, A. (1998). Architecture and cell types of the adult subventricular zone: In search of the stem cells. Journal of Neurobiology, 36(2), 234-248. doi:10.1002/(sici)1097-4695(199808)36:2<234::aid-neu10>3.0.co;2-e | es_ES |
dc.description.references | Doetsch, F., Caillé, I., Lim, D. A., García-Verdugo, J. M., & Alvarez-Buylla, A. (1999). Subventricular Zone Astrocytes Are Neural Stem Cells in the Adult Mammalian Brain. Cell, 97(6), 703-716. doi:10.1016/s0092-8674(00)80783-7 | es_ES |
dc.description.references | Gage, F. H. (2000). Mammalian Neural Stem Cells. Science, 287(5457), 1433-1438. doi:10.1126/science.287.5457.1433 | es_ES |
dc.description.references | Palmer, T. D., Willhoite, A. R., & Gage, F. H. (2000). Vascular niche for adult hippocampal neurogenesis. The Journal of Comparative Neurology, 425(4), 479-494. doi:10.1002/1096-9861(20001002)425:4<479::aid-cne2>3.0.co;2-3 | es_ES |
dc.description.references | Doetsch, F. (2003). A niche for adult neural stem cells. Current Opinion in Genetics & Development, 13(5), 543-550. doi:10.1016/j.gde.2003.08.012 | es_ES |
dc.description.references | Semino, C. E., Kasahara, J., Hayashi, Y., & Zhang, S. (2004). Entrapment of Migrating Hippocampal Neural Cells in Three-Dimensional Peptide Nanofiber Scaffold. Tissue Engineering, 10(3-4), 643-655. doi:10.1089/107632704323061997 | es_ES |
dc.description.references | Louissaint, A., Rao, S., Leventhal, C., & Goldman, S. A. (2002). Coordinated Interaction of Neurogenesis and Angiogenesis in the Adult Songbird Brain. Neuron, 34(6), 945-960. doi:10.1016/s0896-6273(02)00722-5 | es_ES |
dc.description.references | Li, Q., Ford, M. C., Lavik, E. B., & Madri, J. A. (2006). Modeling the neurovascular niche: VEGF- and BDNF-mediated cross-talk between neural stem cells and endothelial cells: An in vitro study. Journal of Neuroscience Research, 84(8), 1656-1668. doi:10.1002/jnr.21087 | es_ES |
dc.description.references | Milner, R. (2007). A novel three-dimensional system to study interactions between endothelial cells and neural cells of the developing central nervous system. BMC Neuroscience, 8(1). doi:10.1186/1471-2202-8-3 | es_ES |
dc.description.references | Hayashi, Y., Nomura, M., Yamagishi, S.-I., Harada, S.-I., Yamashita, J., & Yamamoto, H. (1997). Induction of various blood-brain barrier properties in non-neural endothelial cells by close apposition to co-cultured astrocytes. Glia, 19(1), 13-26. doi:10.1002/(sici)1098-1136(199701)19:1<13::aid-glia2>3.0.co;2-b | es_ES |
dc.description.references | Lim, J. C., Wolpaw, A. J., Caldwell, M. A., Hladky, S. B., & Barrand, M. A. (2007). Neural precursor cell influences on blood–brain barrier characteristics in rat brain endothelial cells. Brain Research, 1159, 67-76. doi:10.1016/j.brainres.2007.05.032 | es_ES |
dc.description.references | Tontsch, U., & Bauer, H.-C. (1991). Glial cells and neurons induce blood-brain barrier related enzymes in cultured cerebral endothelial cells. Brain Research, 539(2), 247-253. doi:10.1016/0006-8993(91)91628-e | es_ES |
dc.description.references | Weidenfeller, C., Svendsen, C. N., & Shusta, E. V. (2007). Differentiating embryonic neural progenitor cells induce blood?brain barrier properties. Journal of Neurochemistry, 101(2), 555-565. doi:10.1111/j.1471-4159.2006.04394.x | es_ES |
dc.description.references | Su, L., Zhao, B., Lv, X., Zhao, J., Zhang, S., & Miao, J. (2007). Safrole oxide is a useful tool for investigating the effect of apoptosis in vascular endothelial cells on neural stem cell survival and differentiation in vitro. Bioorganic & Medicinal Chemistry Letters, 17(11), 3167-3171. doi:10.1016/j.bmcl.2007.03.032 | es_ES |
dc.description.references | Lowry, N., Goderie, S. K., Adamo, M., Lederman, P., Charniga, C., Gill, J., … Temple, S. (2008). Multipotent embryonic spinal cord stem cells expanded by endothelial factors and Shh/RA promote functional recovery after spinal cord injury. Experimental Neurology, 209(2), 510-522. doi:10.1016/j.expneurol.2007.09.031 | es_ES |
dc.description.references | Peretz, H., Talpalar, A. E., Vago, R., & Baranes, D. (2007). Superior Survival and Durability of Neurons and Astrocytes on 3-Dimensional Aragonite Biomatrices. Tissue Engineering, 13(3), 461-472. doi:10.1089/ten.2005.0522 | es_ES |
dc.description.references | Shany, B., Peretz, H., Blinder, P., Lichtenfeld, Y., Jeger, R., Vago, R., & Baranes, D. (2006). Aragonite Crystalline Biomatrices Support Astrocytic Tissue Formation in Vitro and in Vivo. Tissue Engineering, 12(7), 1763-1773. doi:10.1089/ten.2006.12.1763 | es_ES |
dc.description.references | Hayman, M. W., Smith, K. H., Cameron, N. R., & Przyborski, S. A. (2005). Growth of human stem cell-derived neurons on solid three-dimensional polymers. Journal of Biochemical and Biophysical Methods, 62(3), 231-240. doi:10.1016/j.jbbm.2004.12.001 | es_ES |
dc.description.references | Hayman, M. ., Smith, K. ., Cameron, N. ., & Przyborski, S. . (2004). Enhanced neurite outgrowth by human neurons grown on solid three-dimensional scaffolds. Biochemical and Biophysical Research Communications, 314(2), 483-488. doi:10.1016/j.bbrc.2003.12.135 | es_ES |
dc.description.references | Goldner, J. S., Bruder, J. M., Li, G., Gazzola, D., & Hoffman-Kim, D. (2006). Neurite bridging across micropatterned grooves. Biomaterials, 27(3), 460-472. doi:10.1016/j.biomaterials.2005.06.035 | es_ES |
dc.description.references | Willerth, S. M., Arendas, K. J., Gottlieb, D. I., & Sakiyama-Elbert, S. E. (2006). Optimization of fibrin scaffolds for differentiation of murine embryonic stem cells into neural lineage cells. Biomaterials, 27(36), 5990-6003. doi:10.1016/j.biomaterials.2006.07.036 | es_ES |
dc.description.references | Stevens, M. M. (2005). Exploring and Engineering the Cell Surface Interface. Science, 310(5751), 1135-1138. doi:10.1126/science.1106587 | es_ES |
dc.description.references | Luckenbill-Edds, L. (1997). Laminin and the mechanism of neuronal outgrowth. Brain Research Reviews, 23(1-2), 1-27. doi:10.1016/s0165-0173(96)00013-6 | es_ES |
dc.description.references | Holmes, T. C., de Lacalle, S., Su, X., Liu, G., Rich, A., & Zhang, S. (2000). Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proceedings of the National Academy of Sciences, 97(12), 6728-6733. doi:10.1073/pnas.97.12.6728 | es_ES |
dc.description.references | Diego, R. B., Olmedilla, M. P., Aroca, A. S., Ribelles, J. L. G., Pradas, M. M., Ferrer, G. G., & Sánchez, M. S. (2005). Acrylic scaffolds with interconnected spherical pores and controlled hydrophilicity for tissue engineering. Journal of Materials Science: Materials in Medicine, 16(8), 693-698. doi:10.1007/s10856-005-2604-7 | es_ES |
dc.description.references | Soria, J. M., Martínez Ramos, C., Bahamonde, O., García Cruz, D. M., Salmerón Sánchez, M., García Esparza, M. A., … Barcia, J. A. (2007). Influence of the substrate’s hydrophilicity on thein vitro Schwann cells viability. Journal of Biomedical Materials Research Part A, 83A(2), 463-470. doi:10.1002/jbm.a.31297 | es_ES |
dc.description.references | Martínez-Ramos, C., Lainez, S., Sancho, F., García Esparza, M. A., Planells-Cases, R., García Verdugo, J. M., … Soria, J. M. (2008). Differentiation of Postnatal Neural Stem Cells into Glia and Functional Neurons on Laminin-Coated Polymeric Substrates. Tissue Engineering Part A, 14(8), 1365-1375. doi:10.1089/ten.tea.2007.0295 | es_ES |
dc.description.references | Campillo-Fernandez, A. J., Pastor, S., Abad-Collado, M., Bataille, L., Gomez-Ribelles, J. L., Meseguer-Dueñas, J. M., … Ruiz-Moreno, J. M. (2007). Future Design of a New Keratoprosthesis. Physical and Biological Analysis of Polymeric Substrates for Epithelial Cell Growth. Biomacromolecules, 8(8), 2429-2436. doi:10.1021/bm0703012 | es_ES |
dc.description.references | Gao, C., Hu, X., Hong, Y., Guan, J., & Shen, J. (2003). Photografting of poly(hydroxylethyl acrylate) onto porous polyurethane scaffolds to improve their endothelial cell compatibility. Journal of Biomaterials Science, Polymer Edition, 14(9), 937-950. doi:10.1163/156856203322381429 | es_ES |