- -

Three-Dimensional Scaffolds as a Model System for Neural and Endothelial In Vitro Culture

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Three-Dimensional Scaffolds as a Model System for Neural and Endothelial In Vitro Culture

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Dias Veiga, Diana Alexandra es_ES
dc.contributor.author Costa Antunes, Joana Isabel es_ES
dc.contributor.author García Gómez, Roberto es_ES
dc.contributor.author Mano, Joao F es_ES
dc.contributor.author Gómez Ribelles, José Luís es_ES
dc.contributor.author Miguel Soria, Jose es_ES
dc.date.accessioned 2016-05-17T07:13:58Z
dc.date.available 2016-05-17T07:13:58Z
dc.date.issued 2011-09
dc.identifier.issn 0885-3282
dc.identifier.uri http://hdl.handle.net/10251/64168
dc.description.abstract Biomaterials based on the hydrophobic homopolymer poly(ethyl acrylate), PEA, and its copolymers with hydroxyethyl acrylate, p(EA-co-HEA) and methacrylic acid, p(EA-co-MAAc) were prepared as polymeric scaffolds with interconnected pores of 90 microns and tested in vitro as culture substrates and compared for their impact on the differentiation of neural stem cells (NSC) obtained from the subventricular zone (SVZ) of postnatal rats and human endothelial cells (HUVEC). Immunocytochemical staining assay for specific markers show that p(EA-co-MAAc) scaffolds were suitable substrates to promote cell attachment and differentiation of adult NSC and HUVEC cells. es_ES
dc.description.sponsorship The support of the Spanish Ministry of Science through Project No. MAT2007-66759-C03-01 (including the FEDER financial support) is acknowledged. Copernicus-Santander (PRCEU-UCH/COP01/08) Universidad CEU- Cardenal Herrera. Programa de ayudas a la Investigacion Universidad CEU- Cardenal Herrera (PRCEU-UCH16/09). Programa de ayudas a la Investigacion cientifica Ramon Areces (2009). SEM was performed under the technical guide of the Microscopy Service at the Universidad Politecnica de Valencia. en_EN
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof Journal of Biomaterials Applications es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject cell culture es_ES
dc.subject polymeric scaffolds es_ES
dc.subject neural stem cells es_ES
dc.subject biomaterials es_ES
dc.subject endothelial cells es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Three-Dimensional Scaffolds as a Model System for Neural and Endothelial In Vitro Culture es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/0885328210365005
dc.relation.projectID info:eu-repo/grantAgreement/MEC//MAT2007-66759-C03-01/ES/NUEVOS SUBSTRATOS POLIMERICOS BIORREABSORBIBLES PARA LA REGENERACION DEL CARTILAGO ARTICULAR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Universidad CEU Cardenal Herrera//PRCEU-UCH%2FCOP01%2F08/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Universidad CEU Cardenal Herrera//PRCEU-UCH16%2F09/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Dias Veiga, DA.; Costa Antunes, JI.; García Gómez, R.; Mano, JF.; Gómez Ribelles, JL.; Miguel Soria, J. (2011). Three-Dimensional Scaffolds as a Model System for Neural and Endothelial In Vitro Culture. Journal of Biomaterials Applications. 26(3):293-310. https://doi.org/10.1177/0885328210365005 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1177/0885328210365005 es_ES
dc.description.upvformatpinicio 293 es_ES
dc.description.upvformatpfin 310 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 26 es_ES
dc.description.issue 3 es_ES
dc.relation.senia 212282 es_ES
dc.identifier.eissn 1530-8022
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Universidad CEU Cardenal Herrera es_ES
dc.contributor.funder Fundación Ramón Areces es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Lois, C., & Alvarez-Buylla, A. (1994). Long-distance neuronal migration in the adult mammalian brain. Science, 264(5162), 1145-1148. doi:10.1126/science.8178174 es_ES
dc.description.references Garc�a-Verdugo, J. M., Doetsch, F., Wichterle, H., Lim, D. A., & Alvarez-Buylla, A. (1998). Architecture and cell types of the adult subventricular zone: In search of the stem cells. Journal of Neurobiology, 36(2), 234-248. doi:10.1002/(sici)1097-4695(199808)36:2<234::aid-neu10>3.0.co;2-e es_ES
dc.description.references Doetsch, F., Caillé, I., Lim, D. A., García-Verdugo, J. M., & Alvarez-Buylla, A. (1999). Subventricular Zone Astrocytes Are Neural Stem Cells in the Adult Mammalian Brain. Cell, 97(6), 703-716. doi:10.1016/s0092-8674(00)80783-7 es_ES
dc.description.references Gage, F. H. (2000). Mammalian Neural Stem Cells. Science, 287(5457), 1433-1438. doi:10.1126/science.287.5457.1433 es_ES
dc.description.references Palmer, T. D., Willhoite, A. R., & Gage, F. H. (2000). Vascular niche for adult hippocampal neurogenesis. The Journal of Comparative Neurology, 425(4), 479-494. doi:10.1002/1096-9861(20001002)425:4<479::aid-cne2>3.0.co;2-3 es_ES
dc.description.references Doetsch, F. (2003). A niche for adult neural stem cells. Current Opinion in Genetics & Development, 13(5), 543-550. doi:10.1016/j.gde.2003.08.012 es_ES
dc.description.references Semino, C. E., Kasahara, J., Hayashi, Y., & Zhang, S. (2004). Entrapment of Migrating Hippocampal Neural Cells in Three-Dimensional Peptide Nanofiber Scaffold. Tissue Engineering, 10(3-4), 643-655. doi:10.1089/107632704323061997 es_ES
dc.description.references Louissaint, A., Rao, S., Leventhal, C., & Goldman, S. A. (2002). Coordinated Interaction of Neurogenesis and Angiogenesis in the Adult Songbird Brain. Neuron, 34(6), 945-960. doi:10.1016/s0896-6273(02)00722-5 es_ES
dc.description.references Li, Q., Ford, M. C., Lavik, E. B., & Madri, J. A. (2006). Modeling the neurovascular niche: VEGF- and BDNF-mediated cross-talk between neural stem cells and endothelial cells: An in vitro study. Journal of Neuroscience Research, 84(8), 1656-1668. doi:10.1002/jnr.21087 es_ES
dc.description.references Milner, R. (2007). A novel three-dimensional system to study interactions between endothelial cells and neural cells of the developing central nervous system. BMC Neuroscience, 8(1). doi:10.1186/1471-2202-8-3 es_ES
dc.description.references Hayashi, Y., Nomura, M., Yamagishi, S.-I., Harada, S.-I., Yamashita, J., & Yamamoto, H. (1997). Induction of various blood-brain barrier properties in non-neural endothelial cells by close apposition to co-cultured astrocytes. Glia, 19(1), 13-26. doi:10.1002/(sici)1098-1136(199701)19:1<13::aid-glia2>3.0.co;2-b es_ES
dc.description.references Lim, J. C., Wolpaw, A. J., Caldwell, M. A., Hladky, S. B., & Barrand, M. A. (2007). Neural precursor cell influences on blood–brain barrier characteristics in rat brain endothelial cells. Brain Research, 1159, 67-76. doi:10.1016/j.brainres.2007.05.032 es_ES
dc.description.references Tontsch, U., & Bauer, H.-C. (1991). Glial cells and neurons induce blood-brain barrier related enzymes in cultured cerebral endothelial cells. Brain Research, 539(2), 247-253. doi:10.1016/0006-8993(91)91628-e es_ES
dc.description.references Weidenfeller, C., Svendsen, C. N., & Shusta, E. V. (2007). Differentiating embryonic neural progenitor cells induce blood?brain barrier properties. Journal of Neurochemistry, 101(2), 555-565. doi:10.1111/j.1471-4159.2006.04394.x es_ES
dc.description.references Su, L., Zhao, B., Lv, X., Zhao, J., Zhang, S., & Miao, J. (2007). Safrole oxide is a useful tool for investigating the effect of apoptosis in vascular endothelial cells on neural stem cell survival and differentiation in vitro. Bioorganic & Medicinal Chemistry Letters, 17(11), 3167-3171. doi:10.1016/j.bmcl.2007.03.032 es_ES
dc.description.references Lowry, N., Goderie, S. K., Adamo, M., Lederman, P., Charniga, C., Gill, J., … Temple, S. (2008). Multipotent embryonic spinal cord stem cells expanded by endothelial factors and Shh/RA promote functional recovery after spinal cord injury. Experimental Neurology, 209(2), 510-522. doi:10.1016/j.expneurol.2007.09.031 es_ES
dc.description.references Peretz, H., Talpalar, A. E., Vago, R., & Baranes, D. (2007). Superior Survival and Durability of Neurons and Astrocytes on 3-Dimensional Aragonite Biomatrices. Tissue Engineering, 13(3), 461-472. doi:10.1089/ten.2005.0522 es_ES
dc.description.references Shany, B., Peretz, H., Blinder, P., Lichtenfeld, Y., Jeger, R., Vago, R., & Baranes, D. (2006). Aragonite Crystalline Biomatrices Support Astrocytic Tissue Formation in Vitro and in Vivo. Tissue Engineering, 12(7), 1763-1773. doi:10.1089/ten.2006.12.1763 es_ES
dc.description.references Hayman, M. W., Smith, K. H., Cameron, N. R., & Przyborski, S. A. (2005). Growth of human stem cell-derived neurons on solid three-dimensional polymers. Journal of Biochemical and Biophysical Methods, 62(3), 231-240. doi:10.1016/j.jbbm.2004.12.001 es_ES
dc.description.references Hayman, M. ., Smith, K. ., Cameron, N. ., & Przyborski, S. . (2004). Enhanced neurite outgrowth by human neurons grown on solid three-dimensional scaffolds. Biochemical and Biophysical Research Communications, 314(2), 483-488. doi:10.1016/j.bbrc.2003.12.135 es_ES
dc.description.references Goldner, J. S., Bruder, J. M., Li, G., Gazzola, D., & Hoffman-Kim, D. (2006). Neurite bridging across micropatterned grooves. Biomaterials, 27(3), 460-472. doi:10.1016/j.biomaterials.2005.06.035 es_ES
dc.description.references Willerth, S. M., Arendas, K. J., Gottlieb, D. I., & Sakiyama-Elbert, S. E. (2006). Optimization of fibrin scaffolds for differentiation of murine embryonic stem cells into neural lineage cells. Biomaterials, 27(36), 5990-6003. doi:10.1016/j.biomaterials.2006.07.036 es_ES
dc.description.references Stevens, M. M. (2005). Exploring and Engineering the Cell Surface Interface. Science, 310(5751), 1135-1138. doi:10.1126/science.1106587 es_ES
dc.description.references Luckenbill-Edds, L. (1997). Laminin and the mechanism of neuronal outgrowth. Brain Research Reviews, 23(1-2), 1-27. doi:10.1016/s0165-0173(96)00013-6 es_ES
dc.description.references Holmes, T. C., de Lacalle, S., Su, X., Liu, G., Rich, A., & Zhang, S. (2000). Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proceedings of the National Academy of Sciences, 97(12), 6728-6733. doi:10.1073/pnas.97.12.6728 es_ES
dc.description.references Diego, R. B., Olmedilla, M. P., Aroca, A. S., Ribelles, J. L. G., Pradas, M. M., Ferrer, G. G., & Sánchez, M. S. (2005). Acrylic scaffolds with interconnected spherical pores and controlled hydrophilicity for tissue engineering. Journal of Materials Science: Materials in Medicine, 16(8), 693-698. doi:10.1007/s10856-005-2604-7 es_ES
dc.description.references Soria, J. M., Martínez Ramos, C., Bahamonde, O., García Cruz, D. M., Salmerón Sánchez, M., García Esparza, M. A., … Barcia, J. A. (2007). Influence of the substrate’s hydrophilicity on thein vitro Schwann cells viability. Journal of Biomedical Materials Research Part A, 83A(2), 463-470. doi:10.1002/jbm.a.31297 es_ES
dc.description.references Martínez-Ramos, C., Lainez, S., Sancho, F., García Esparza, M. A., Planells-Cases, R., García Verdugo, J. M., … Soria, J. M. (2008). Differentiation of Postnatal Neural Stem Cells into Glia and Functional Neurons on Laminin-Coated Polymeric Substrates. Tissue Engineering Part A, 14(8), 1365-1375. doi:10.1089/ten.tea.2007.0295 es_ES
dc.description.references Campillo-Fernandez, A. J., Pastor, S., Abad-Collado, M., Bataille, L., Gomez-Ribelles, J. L., Meseguer-Dueñas, J. M., … Ruiz-Moreno, J. M. (2007). Future Design of a New Keratoprosthesis. Physical and Biological Analysis of Polymeric Substrates for Epithelial Cell Growth. Biomacromolecules, 8(8), 2429-2436. doi:10.1021/bm0703012 es_ES
dc.description.references Gao, C., Hu, X., Hong, Y., Guan, J., & Shen, J. (2003). Photografting of poly(hydroxylethyl acrylate) onto porous polyurethane scaffolds to improve their endothelial cell compatibility. Journal of Biomaterials Science, Polymer Edition, 14(9), 937-950. doi:10.1163/156856203322381429 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem