Marlovits, S., Zeller, P., Singer, P., Resinger, C., & Vécsei, V. (2006). Cartilage repair: Generations of autologous chondrocyte transplantation. European Journal of Radiology, 57(1), 24-31. doi:10.1016/j.ejrad.2005.08.009
Elisseeff, J. (2004). Injectable cartilage tissue engineering. Expert Opinion on Biological Therapy, 4(12), 1849-1859. doi:10.1517/14712598.4.12.1849
Langer, R. S., & Vacanti, J. P. (1999). Tissue Engineering: The Challenges Ahead. Scientific American, 280(4), 86-89. doi:10.1038/scientificamerican0499-86
[+]
Marlovits, S., Zeller, P., Singer, P., Resinger, C., & Vécsei, V. (2006). Cartilage repair: Generations of autologous chondrocyte transplantation. European Journal of Radiology, 57(1), 24-31. doi:10.1016/j.ejrad.2005.08.009
Elisseeff, J. (2004). Injectable cartilage tissue engineering. Expert Opinion on Biological Therapy, 4(12), 1849-1859. doi:10.1517/14712598.4.12.1849
Langer, R. S., & Vacanti, J. P. (1999). Tissue Engineering: The Challenges Ahead. Scientific American, 280(4), 86-89. doi:10.1038/scientificamerican0499-86
Francioli, S. E., Candrian, C., Martin, K., Heberer, M., Martin, I., & Barbero, A. (2010). Effect of three-dimensional expansion and cell seeding density on the cartilage-forming capacity of human articular chondrocytes in type II collagen sponges. Journal of Biomedical Materials Research Part A, 95A(3), 924-931. doi:10.1002/jbm.a.32917
Lien, S.-M., Ko, L.-Y., & Huang, T.-J. (2009). Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta Biomaterialia, 5(2), 670-679. doi:10.1016/j.actbio.2008.09.020
Appelman, T. P., Mizrahi, J., Elisseeff, J. H., & Seliktar, D. (2011). The influence of biological motifs and dynamic mechanical stimulation in hydrogel scaffold systems on the phenotype of chondrocytes. Biomaterials, 32(6), 1508-1516. doi:10.1016/j.biomaterials.2010.10.017
Zhang, C., Sangaj, N., Hwang, Y., Phadke, A., Chang, C.-W., & Varghese, S. (2011). Oligo(trimethylene carbonate)–poly(ethylene glycol)–oligo(trimethylene carbonate) triblock-based hydrogels for cartilage tissue engineering. Acta Biomaterialia, 7(9), 3362-3369. doi:10.1016/j.actbio.2011.05.024
Mehlhorn, A. T., Zwingmann, J., Finkenzeller, G., Niemeyer, P., Dauner, M., Stark, B., … Schmal, H. (2009). Chondrogenesis of Adipose-Derived Adult Stem Cells in a Poly-Lactide-Co-Glycolide Scaffold. Tissue Engineering Part A, 15(5), 1159-1167. doi:10.1089/ten.tea.2008.0069
Lee, N. K., Oh, H. J., Hong, C. M., Suh, H., & Hong, S. H. (2009). Comparison of the synthetic biodegradable polymers, polylactide (PLA), and polylactic-co-glycolic acid (PLGA) as scaffolds for artificial cartilage. Biotechnology and Bioprocess Engineering, 14(2), 180-186. doi:10.1007/s12257-008-0208-z
Tan, H., Chu, C. R., Payne, K. A., & Marra, K. G. (2009). Injectable in situ forming biodegradable chitosan–hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials, 30(13), 2499-2506. doi:10.1016/j.biomaterials.2008.12.080
Correia, C. R., Moreira-Teixeira, L. S., Moroni, L., Reis, R. L., van Blitterswijk, C. A., Karperien, M., & Mano, J. F. (2011). Chitosan Scaffolds Containing Hyaluronic Acid for Cartilage Tissue Engineering. Tissue Engineering Part C: Methods, 17(7), 717-730. doi:10.1089/ten.tec.2010.0467
Concaro, S., Nicklasson, E., Ellowsson, L., Lindahl, A., Brittberg, M., & Gatenholm, P. (2008). Effect of cell seeding concentration on the quality of tissue engineered constructs loaded with adult human articular chondrocytes. Journal of Tissue Engineering and Regenerative Medicine, 2(1), 14-21. doi:10.1002/term.60
Malafaya, P. B., Santos, T. C., van Griensven, M., & Reis, R. L. (2008). Morphology, mechanical characterization and in vivo neo-vascularization of chitosan particle aggregated scaffolds architectures. Biomaterials, 29(29), 3914-3926. doi:10.1016/j.biomaterials.2008.06.023
Mrugala, D., Bony, C., Neves, N., Caillot, L., Fabre, S., Moukoko, D., … Noel, D. (2007). Phenotypic and functional characterisation of ovine mesenchymal stem cells: application to a cartilage defect model. Annals of the Rheumatic Diseases, 67(3), 288-295. doi:10.1136/ard.2007.076620
Salisbury Palomares, K. T., Gerstenfeld, L. C., Wigner, N. A., Lenburg, M. E., Einhorn, T. A., & Morgan, E. F. (2010). Transcriptional profiling and biochemical analysis of mechanically induced cartilaginous tissues in a rat model. Arthritis & Rheumatism, 62(4), 1108-1118. doi:10.1002/art.27343
Darling, E. M., & Athanasiou, K. A. (2003). Articular Cartilage Bioreactors and Bioprocesses. Tissue Engineering, 9(1), 9-26. doi:10.1089/107632703762687492
Davisson, T., Sah, R. L., & Ratcliffe, A. (2002). Perfusion Increases Cell Content and Matrix Synthesis in Chondrocyte Three-Dimensional Cultures. Tissue Engineering, 8(5), 807-816. doi:10.1089/10763270260424169
Pazzano, D., Mercier, K. A., Moran, J. M., Fong, S. S., DiBiasio, D. D., Rulfs, J. X., … Bonassar, L. J. (2000). Comparison of Chondrogensis in Static and Perfused Bioreactor Culture. Biotechnology Progress, 16(5), 893-896. doi:10.1021/bp000082v
Gooch, K. J., Kwon, J. H., Blunk, T., Langer, R., Freed, L. E., & Vunjak-Novakovic, G. (2001). Effects of mixing intensity on tissue-engineered cartilage. Biotechnology and Bioengineering, 72(4), 402-407. doi:10.1002/1097-0290(20000220)72:4<402::aid-bit1002>3.0.co;2-q
Vunjak-Novakovic, G., Martin, I., Obradovic, B., Treppo, S., Grodzinsky, A. J., Langer, R., & Freed, L. E. (1999). Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. Journal of Orthopaedic Research, 17(1), 130-138. doi:10.1002/jor.1100170119
Da Silva, R. M. P., Mano, J. F., & Reis, R. L. (2008). Straightforward Determination of the Degree ofN‐Acetylation of Chitosan by Means of First‐Derivative UV Spectrophotometry. Macromolecular Chemistry and Physics, 209(14), 1463-1472. doi:10.1002/macp.200800191
García Cruz, D. M., Gomes, M., Reis, R. L., Moratal, D., Salmerón-Sánchez, M., Gómez Ribelles, J. L., & Mano, J. F. (2010). Differentiation of mesenchymal stem cells in chitosan scaffolds with double micro and macroporosity. Journal of Biomedical Materials Research Part A, 95A(4), 1182-1193. doi:10.1002/jbm.a.32906
Washburn, E. W. (1921). The Dynamics of Capillary Flow. Physical Review, 17(3), 273-283. doi:10.1103/physrev.17.273
Pérez Olmedilla, M., Garcia-Giralt, N., Pradas, M. M., Ruiz, P. B., Gómez Ribelles, J. L., Palou, E. C., & García, J. C. M. (2006). Response of human chondrocytes to a non-uniform distribution of hydrophilic domains on poly (ethyl acrylate-co-hydroxyethyl methacrylate) copolymers. Biomaterials, 27(7), 1003-1012. doi:10.1016/j.biomaterials.2005.07.030
Bhosale, A. M., & Richardson, J. B. (2008). Articular cartilage: structure, injuries and review of management. British Medical Bulletin, 87(1), 77-95. doi:10.1093/bmb/ldn025
Sanz-Herrera, J. A., Moreo, P., García-Aznar, J. M., & Doblaré, M. (2009). On the effect of substrate curvature on cell mechanics. Biomaterials, 30(34), 6674-6686. doi:10.1016/j.biomaterials.2009.08.053
PACIFICI, M. (2006). Cellular and Molecular Mechanisms of Synovial Joint and Articular Cartilage Formation. Annals of the New York Academy of Sciences, 1068(1), 74-86. doi:10.1196/annals.1346.010
Uematsu, K., Hattori, K., Ishimoto, Y., Yamauchi, J., Habata, T., Takakura, Y., … Sato, M. (2005). Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold. Biomaterials, 26(20), 4273-4279. doi:10.1016/j.biomaterials.2004.10.037
GRIFFON, D., SEDIGHI, M., SCHAEFFER, D., EURELL, J., & JOHNSON, A. (2006). Chitosan scaffolds: Interconnective pore size and cartilage engineering. Acta Biomaterialia, 2(3), 313-320. doi:10.1016/j.actbio.2005.12.007
Alves da Silva, M. L., Crawford, A., Mundy, J. M., Correlo, V. M., Sol, P., Bhattacharya, M., … Neves, N. M. (2010). Chitosan/polyester-based scaffolds for cartilage tissue engineering: Assessment of extracellular matrix formation. Acta Biomaterialia, 6(3), 1149-1157. doi:10.1016/j.actbio.2009.09.006
Chung, C., Erickson, I. E., Mauck, R. L., & Burdick, J. A. (2008). Differential Behavior of Auricular and Articular Chondrocytes in Hyaluronic Acid Hydrogels. Tissue Engineering Part A, 14(7), 1121-1131. doi:10.1089/ten.tea.2007.0291
Darling, E. M., & Athanasiou, K. A. (2005). Rapid phenotypic changes in passaged articular chondrocyte subpopulations. Journal of Orthopaedic Research, 23(2), 425-432. doi:10.1016/j.orthres.2004.08.008
Brodkin, K. R., Garcı́a, A. J., & Levenston, M. E. (2004). Chondrocyte phenotypes on different extracellular matrix monolayers. Biomaterials, 25(28), 5929-5938. doi:10.1016/j.biomaterials.2004.01.044
Barbero, A., Grogan, S. P., Mainil-Varlet, P., & Martin, I. (2006). Expansion on specific substrates regulates the phenotype and differentiation capacity of human articular chondrocytes. Journal of Cellular Biochemistry, 98(5), 1140-1149. doi:10.1002/jcb.20754
Kheir, E., & Shaw, D. (2009). Hyaline articular cartilage. Orthopaedics and Trauma, 23(6), 450-455. doi:10.1016/j.mporth.2009.01.003
Carver, S. E., & Heath, C. A. (1999). Increasing extracellular matrix production in regenerating cartilage with intermittent physiological pressure. Biotechnology and Bioengineering, 62(2), 166-174. doi:10.1002/(sici)1097-0290(19990120)62:2<166::aid-bit6>3.0.co;2-k
Ragetly, G., Griffon, D. J., & Chung, Y. S. (2010). The effect of type II collagen coating of chitosan fibrous scaffolds on mesenchymal stem cell adhesion and chondrogenesis. Acta Biomaterialia, 6(10), 3988-3997. doi:10.1016/j.actbio.2010.05.016
Curran, S. J., Chen, R., Curran, J. M., & Hunt, J. A. (2005). Expansion of Human Chondrocytes in an Intermittent Stirred Flow Bioreactor, Using Modified Biodegradable Microspheres. Tissue Engineering, 11(9-10), 1312-1322. doi:10.1089/ten.2005.11.1312
Tığlı, R. S., & Gümüşderelioğlu, M. (2009). Chondrogenesis on BMP-6 loaded chitosan scaffolds in stationary and dynamic cultures. Biotechnology and Bioengineering, 104(3), 601-610. doi:10.1002/bit.22426
[-]