Mostrar el registro sencillo del ítem
dc.contributor.author | García Cruz, Dunia Mercedes | es_ES |
dc.contributor.author | Salmerón Sánchez, Manuel | es_ES |
dc.contributor.author | Gómez Ribelles, José Luís | es_ES |
dc.date.accessioned | 2016-05-17T07:22:45Z | |
dc.date.available | 2016-05-17T07:22:45Z | |
dc.date.issued | 2012-09 | |
dc.identifier.issn | 1549-3296 | |
dc.identifier.uri | http://hdl.handle.net/10251/64176 | |
dc.description.abstract | The aim of this study is to show the favorable effect of simple dynamic culture conditions on chondrogenesis of previously expanded human chondrocytes seeded in a macroporous scaffold with week cell-pore walls adhesion. We obtained enhanced chondrogenesis by the combination of chitosan porous supports with a double micro- and macro-pore structure and cell culture in a stirring bioreactor. Cell-scaffold constructs were cultured under static or mechanically stimulated conditions using an intermittent stirred flow bioreactor during 28 days. In static culture, the chondrocytes were homogeneously distributed throughout the scaffold pores; cells adhered to the scaffold pore walls, showed extended morphology and were able to proliferate. Immunofluorescense and biochemical assays showed abundant type I collagen deposition at day 28. However, the behavior of chondrocytes submitted to mechanical stimuli in the bioreactor was completely different. Mechanical loading influenced cell morphology and extracellular matrix composition. Under dynamic conditions, chondrocytes kept their characteristic phenotype and tended to form cell aggregates surrounded by a layer of the main components of the hyaline cartilage extracellular matrix, type II collagen, and aggrecan. An enhanced aggrecan and collagen type II production was observed in engineered cartilage constructs cultured under stirred flow compared with those cultured under static conditions. | es_ES |
dc.description.sponsorship | Contract grant sponsor: Spanish Ministry of Education; contract grant number: MCINN-MAT2010-21611-C03-01 | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley | es_ES |
dc.relation.ispartof | Journal of Biomedical Materials Research Part A | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | chitosan scaffolds | es_ES |
dc.subject | chondrocyte | es_ES |
dc.subject | cartilage tissue engineering | es_ES |
dc.subject | phenotype | es_ES |
dc.subject | bioreactor | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Stirred flow bioreactor modulates chondrocyte growth and extracellular matrix biosynthesis in chitosan scaffolds | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/jbm.a.34174 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MAT2010-21611-C03-01/ES/MATERIALES BIOESTABLES Y BIOREABSORBIBLES A LARGO PLAZO COMO SOPORTES MACROPOROSOS PARA LA REGENERACION DEL CARTILAGO ARTICULAR/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.description.bibliographicCitation | García Cruz, DM.; Salmerón Sánchez, M.; Gómez Ribelles, JL. (2012). Stirred flow bioreactor modulates chondrocyte growth and extracellular matrix biosynthesis in chitosan scaffolds. Journal of Biomedical Materials Research Part A. 100A(9):2330-2341. https://doi.org/10.1002/jbm.a.34174 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/jbm.a.34174 | es_ES |
dc.description.upvformatpinicio | 2330 | es_ES |
dc.description.upvformatpfin | 2341 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 100A | es_ES |
dc.description.issue | 9 | es_ES |
dc.relation.senia | 239474 | es_ES |
dc.identifier.eissn | 1552-4965 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Marlovits, S., Zeller, P., Singer, P., Resinger, C., & Vécsei, V. (2006). Cartilage repair: Generations of autologous chondrocyte transplantation. European Journal of Radiology, 57(1), 24-31. doi:10.1016/j.ejrad.2005.08.009 | es_ES |
dc.description.references | Elisseeff, J. (2004). Injectable cartilage tissue engineering. Expert Opinion on Biological Therapy, 4(12), 1849-1859. doi:10.1517/14712598.4.12.1849 | es_ES |
dc.description.references | Langer, R. S., & Vacanti, J. P. (1999). Tissue Engineering: The Challenges Ahead. Scientific American, 280(4), 86-89. doi:10.1038/scientificamerican0499-86 | es_ES |
dc.description.references | Francioli, S. E., Candrian, C., Martin, K., Heberer, M., Martin, I., & Barbero, A. (2010). Effect of three-dimensional expansion and cell seeding density on the cartilage-forming capacity of human articular chondrocytes in type II collagen sponges. Journal of Biomedical Materials Research Part A, 95A(3), 924-931. doi:10.1002/jbm.a.32917 | es_ES |
dc.description.references | Lien, S.-M., Ko, L.-Y., & Huang, T.-J. (2009). Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta Biomaterialia, 5(2), 670-679. doi:10.1016/j.actbio.2008.09.020 | es_ES |
dc.description.references | Appelman, T. P., Mizrahi, J., Elisseeff, J. H., & Seliktar, D. (2011). The influence of biological motifs and dynamic mechanical stimulation in hydrogel scaffold systems on the phenotype of chondrocytes. Biomaterials, 32(6), 1508-1516. doi:10.1016/j.biomaterials.2010.10.017 | es_ES |
dc.description.references | Zhang, C., Sangaj, N., Hwang, Y., Phadke, A., Chang, C.-W., & Varghese, S. (2011). Oligo(trimethylene carbonate)–poly(ethylene glycol)–oligo(trimethylene carbonate) triblock-based hydrogels for cartilage tissue engineering. Acta Biomaterialia, 7(9), 3362-3369. doi:10.1016/j.actbio.2011.05.024 | es_ES |
dc.description.references | Mehlhorn, A. T., Zwingmann, J., Finkenzeller, G., Niemeyer, P., Dauner, M., Stark, B., … Schmal, H. (2009). Chondrogenesis of Adipose-Derived Adult Stem Cells in a Poly-Lactide-Co-Glycolide Scaffold. Tissue Engineering Part A, 15(5), 1159-1167. doi:10.1089/ten.tea.2008.0069 | es_ES |
dc.description.references | Lee, N. K., Oh, H. J., Hong, C. M., Suh, H., & Hong, S. H. (2009). Comparison of the synthetic biodegradable polymers, polylactide (PLA), and polylactic-co-glycolic acid (PLGA) as scaffolds for artificial cartilage. Biotechnology and Bioprocess Engineering, 14(2), 180-186. doi:10.1007/s12257-008-0208-z | es_ES |
dc.description.references | Tan, H., Chu, C. R., Payne, K. A., & Marra, K. G. (2009). Injectable in situ forming biodegradable chitosan–hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials, 30(13), 2499-2506. doi:10.1016/j.biomaterials.2008.12.080 | es_ES |
dc.description.references | Correia, C. R., Moreira-Teixeira, L. S., Moroni, L., Reis, R. L., van Blitterswijk, C. A., Karperien, M., & Mano, J. F. (2011). Chitosan Scaffolds Containing Hyaluronic Acid for Cartilage Tissue Engineering. Tissue Engineering Part C: Methods, 17(7), 717-730. doi:10.1089/ten.tec.2010.0467 | es_ES |
dc.description.references | Concaro, S., Nicklasson, E., Ellowsson, L., Lindahl, A., Brittberg, M., & Gatenholm, P. (2008). Effect of cell seeding concentration on the quality of tissue engineered constructs loaded with adult human articular chondrocytes. Journal of Tissue Engineering and Regenerative Medicine, 2(1), 14-21. doi:10.1002/term.60 | es_ES |
dc.description.references | Malafaya, P. B., Santos, T. C., van Griensven, M., & Reis, R. L. (2008). Morphology, mechanical characterization and in vivo neo-vascularization of chitosan particle aggregated scaffolds architectures. Biomaterials, 29(29), 3914-3926. doi:10.1016/j.biomaterials.2008.06.023 | es_ES |
dc.description.references | Mrugala, D., Bony, C., Neves, N., Caillot, L., Fabre, S., Moukoko, D., … Noel, D. (2007). Phenotypic and functional characterisation of ovine mesenchymal stem cells: application to a cartilage defect model. Annals of the Rheumatic Diseases, 67(3), 288-295. doi:10.1136/ard.2007.076620 | es_ES |
dc.description.references | Salisbury Palomares, K. T., Gerstenfeld, L. C., Wigner, N. A., Lenburg, M. E., Einhorn, T. A., & Morgan, E. F. (2010). Transcriptional profiling and biochemical analysis of mechanically induced cartilaginous tissues in a rat model. Arthritis & Rheumatism, 62(4), 1108-1118. doi:10.1002/art.27343 | es_ES |
dc.description.references | Darling, E. M., & Athanasiou, K. A. (2003). Articular Cartilage Bioreactors and Bioprocesses. Tissue Engineering, 9(1), 9-26. doi:10.1089/107632703762687492 | es_ES |
dc.description.references | Davisson, T., Sah, R. L., & Ratcliffe, A. (2002). Perfusion Increases Cell Content and Matrix Synthesis in Chondrocyte Three-Dimensional Cultures. Tissue Engineering, 8(5), 807-816. doi:10.1089/10763270260424169 | es_ES |
dc.description.references | Pazzano, D., Mercier, K. A., Moran, J. M., Fong, S. S., DiBiasio, D. D., Rulfs, J. X., … Bonassar, L. J. (2000). Comparison of Chondrogensis in Static and Perfused Bioreactor Culture. Biotechnology Progress, 16(5), 893-896. doi:10.1021/bp000082v | es_ES |
dc.description.references | Gooch, K. J., Kwon, J. H., Blunk, T., Langer, R., Freed, L. E., & Vunjak-Novakovic, G. (2001). Effects of mixing intensity on tissue-engineered cartilage. Biotechnology and Bioengineering, 72(4), 402-407. doi:10.1002/1097-0290(20000220)72:4<402::aid-bit1002>3.0.co;2-q | es_ES |
dc.description.references | Vunjak-Novakovic, G., Martin, I., Obradovic, B., Treppo, S., Grodzinsky, A. J., Langer, R., & Freed, L. E. (1999). Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. Journal of Orthopaedic Research, 17(1), 130-138. doi:10.1002/jor.1100170119 | es_ES |
dc.description.references | Da Silva, R. M. P., Mano, J. F., & Reis, R. L. (2008). Straightforward Determination of the Degree ofN‐Acetylation of Chitosan by Means of First‐Derivative UV Spectrophotometry. Macromolecular Chemistry and Physics, 209(14), 1463-1472. doi:10.1002/macp.200800191 | es_ES |
dc.description.references | García Cruz, D. M., Gomes, M., Reis, R. L., Moratal, D., Salmerón-Sánchez, M., Gómez Ribelles, J. L., & Mano, J. F. (2010). Differentiation of mesenchymal stem cells in chitosan scaffolds with double micro and macroporosity. Journal of Biomedical Materials Research Part A, 95A(4), 1182-1193. doi:10.1002/jbm.a.32906 | es_ES |
dc.description.references | Washburn, E. W. (1921). The Dynamics of Capillary Flow. Physical Review, 17(3), 273-283. doi:10.1103/physrev.17.273 | es_ES |
dc.description.references | Pérez Olmedilla, M., Garcia-Giralt, N., Pradas, M. M., Ruiz, P. B., Gómez Ribelles, J. L., Palou, E. C., & García, J. C. M. (2006). Response of human chondrocytes to a non-uniform distribution of hydrophilic domains on poly (ethyl acrylate-co-hydroxyethyl methacrylate) copolymers. Biomaterials, 27(7), 1003-1012. doi:10.1016/j.biomaterials.2005.07.030 | es_ES |
dc.description.references | Bhosale, A. M., & Richardson, J. B. (2008). Articular cartilage: structure, injuries and review of management. British Medical Bulletin, 87(1), 77-95. doi:10.1093/bmb/ldn025 | es_ES |
dc.description.references | Sanz-Herrera, J. A., Moreo, P., García-Aznar, J. M., & Doblaré, M. (2009). On the effect of substrate curvature on cell mechanics. Biomaterials, 30(34), 6674-6686. doi:10.1016/j.biomaterials.2009.08.053 | es_ES |
dc.description.references | PACIFICI, M. (2006). Cellular and Molecular Mechanisms of Synovial Joint and Articular Cartilage Formation. Annals of the New York Academy of Sciences, 1068(1), 74-86. doi:10.1196/annals.1346.010 | es_ES |
dc.description.references | Uematsu, K., Hattori, K., Ishimoto, Y., Yamauchi, J., Habata, T., Takakura, Y., … Sato, M. (2005). Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold. Biomaterials, 26(20), 4273-4279. doi:10.1016/j.biomaterials.2004.10.037 | es_ES |
dc.description.references | GRIFFON, D., SEDIGHI, M., SCHAEFFER, D., EURELL, J., & JOHNSON, A. (2006). Chitosan scaffolds: Interconnective pore size and cartilage engineering. Acta Biomaterialia, 2(3), 313-320. doi:10.1016/j.actbio.2005.12.007 | es_ES |
dc.description.references | Alves da Silva, M. L., Crawford, A., Mundy, J. M., Correlo, V. M., Sol, P., Bhattacharya, M., … Neves, N. M. (2010). Chitosan/polyester-based scaffolds for cartilage tissue engineering: Assessment of extracellular matrix formation. Acta Biomaterialia, 6(3), 1149-1157. doi:10.1016/j.actbio.2009.09.006 | es_ES |
dc.description.references | Chung, C., Erickson, I. E., Mauck, R. L., & Burdick, J. A. (2008). Differential Behavior of Auricular and Articular Chondrocytes in Hyaluronic Acid Hydrogels. Tissue Engineering Part A, 14(7), 1121-1131. doi:10.1089/ten.tea.2007.0291 | es_ES |
dc.description.references | Darling, E. M., & Athanasiou, K. A. (2005). Rapid phenotypic changes in passaged articular chondrocyte subpopulations. Journal of Orthopaedic Research, 23(2), 425-432. doi:10.1016/j.orthres.2004.08.008 | es_ES |
dc.description.references | Brodkin, K. R., Garcı́a, A. J., & Levenston, M. E. (2004). Chondrocyte phenotypes on different extracellular matrix monolayers. Biomaterials, 25(28), 5929-5938. doi:10.1016/j.biomaterials.2004.01.044 | es_ES |
dc.description.references | Barbero, A., Grogan, S. P., Mainil-Varlet, P., & Martin, I. (2006). Expansion on specific substrates regulates the phenotype and differentiation capacity of human articular chondrocytes. Journal of Cellular Biochemistry, 98(5), 1140-1149. doi:10.1002/jcb.20754 | es_ES |
dc.description.references | Kheir, E., & Shaw, D. (2009). Hyaline articular cartilage. Orthopaedics and Trauma, 23(6), 450-455. doi:10.1016/j.mporth.2009.01.003 | es_ES |
dc.description.references | Carver, S. E., & Heath, C. A. (1999). Increasing extracellular matrix production in regenerating cartilage with intermittent physiological pressure. Biotechnology and Bioengineering, 62(2), 166-174. doi:10.1002/(sici)1097-0290(19990120)62:2<166::aid-bit6>3.0.co;2-k | es_ES |
dc.description.references | Ragetly, G., Griffon, D. J., & Chung, Y. S. (2010). The effect of type II collagen coating of chitosan fibrous scaffolds on mesenchymal stem cell adhesion and chondrogenesis. Acta Biomaterialia, 6(10), 3988-3997. doi:10.1016/j.actbio.2010.05.016 | es_ES |
dc.description.references | Curran, S. J., Chen, R., Curran, J. M., & Hunt, J. A. (2005). Expansion of Human Chondrocytes in an Intermittent Stirred Flow Bioreactor, Using Modified Biodegradable Microspheres. Tissue Engineering, 11(9-10), 1312-1322. doi:10.1089/ten.2005.11.1312 | es_ES |
dc.description.references | Tığlı, R. S., & Gümüşderelioğlu, M. (2009). Chondrogenesis on BMP-6 loaded chitosan scaffolds in stationary and dynamic cultures. Biotechnology and Bioengineering, 104(3), 601-610. doi:10.1002/bit.22426 | es_ES |