- -

Stirred flow bioreactor modulates chondrocyte growth and extracellular matrix biosynthesis in chitosan scaffolds

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Stirred flow bioreactor modulates chondrocyte growth and extracellular matrix biosynthesis in chitosan scaffolds

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García Cruz, Dunia Mercedes es_ES
dc.contributor.author Salmerón Sánchez, Manuel es_ES
dc.contributor.author Gómez Ribelles, José Luís es_ES
dc.date.accessioned 2016-05-17T07:22:45Z
dc.date.available 2016-05-17T07:22:45Z
dc.date.issued 2012-09
dc.identifier.issn 1549-3296
dc.identifier.uri http://hdl.handle.net/10251/64176
dc.description.abstract The aim of this study is to show the favorable effect of simple dynamic culture conditions on chondrogenesis of previously expanded human chondrocytes seeded in a macroporous scaffold with week cell-pore walls adhesion. We obtained enhanced chondrogenesis by the combination of chitosan porous supports with a double micro- and macro-pore structure and cell culture in a stirring bioreactor. Cell-scaffold constructs were cultured under static or mechanically stimulated conditions using an intermittent stirred flow bioreactor during 28 days. In static culture, the chondrocytes were homogeneously distributed throughout the scaffold pores; cells adhered to the scaffold pore walls, showed extended morphology and were able to proliferate. Immunofluorescense and biochemical assays showed abundant type I collagen deposition at day 28. However, the behavior of chondrocytes submitted to mechanical stimuli in the bioreactor was completely different. Mechanical loading influenced cell morphology and extracellular matrix composition. Under dynamic conditions, chondrocytes kept their characteristic phenotype and tended to form cell aggregates surrounded by a layer of the main components of the hyaline cartilage extracellular matrix, type II collagen, and aggrecan. An enhanced aggrecan and collagen type II production was observed in engineered cartilage constructs cultured under stirred flow compared with those cultured under static conditions. es_ES
dc.description.sponsorship Contract grant sponsor: Spanish Ministry of Education; contract grant number: MCINN-MAT2010-21611-C03-01 en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Journal of Biomedical Materials Research Part A es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject chitosan scaffolds es_ES
dc.subject chondrocyte es_ES
dc.subject cartilage tissue engineering es_ES
dc.subject phenotype es_ES
dc.subject bioreactor es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Stirred flow bioreactor modulates chondrocyte growth and extracellular matrix biosynthesis in chitosan scaffolds es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/jbm.a.34174
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2010-21611-C03-01/ES/MATERIALES BIOESTABLES Y BIOREABSORBIBLES A LARGO PLAZO COMO SOPORTES MACROPOROSOS PARA LA REGENERACION DEL CARTILAGO ARTICULAR/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation García Cruz, DM.; Salmerón Sánchez, M.; Gómez Ribelles, JL. (2012). Stirred flow bioreactor modulates chondrocyte growth and extracellular matrix biosynthesis in chitosan scaffolds. Journal of Biomedical Materials Research Part A. 100A(9):2330-2341. https://doi.org/10.1002/jbm.a.34174 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/jbm.a.34174 es_ES
dc.description.upvformatpinicio 2330 es_ES
dc.description.upvformatpfin 2341 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 100A es_ES
dc.description.issue 9 es_ES
dc.relation.senia 239474 es_ES
dc.identifier.eissn 1552-4965
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Marlovits, S., Zeller, P., Singer, P., Resinger, C., & Vécsei, V. (2006). Cartilage repair: Generations of autologous chondrocyte transplantation. European Journal of Radiology, 57(1), 24-31. doi:10.1016/j.ejrad.2005.08.009 es_ES
dc.description.references Elisseeff, J. (2004). Injectable cartilage tissue engineering. Expert Opinion on Biological Therapy, 4(12), 1849-1859. doi:10.1517/14712598.4.12.1849 es_ES
dc.description.references Langer, R. S., & Vacanti, J. P. (1999). Tissue Engineering: The Challenges Ahead. Scientific American, 280(4), 86-89. doi:10.1038/scientificamerican0499-86 es_ES
dc.description.references Francioli, S. E., Candrian, C., Martin, K., Heberer, M., Martin, I., & Barbero, A. (2010). Effect of three-dimensional expansion and cell seeding density on the cartilage-forming capacity of human articular chondrocytes in type II collagen sponges. Journal of Biomedical Materials Research Part A, 95A(3), 924-931. doi:10.1002/jbm.a.32917 es_ES
dc.description.references Lien, S.-M., Ko, L.-Y., & Huang, T.-J. (2009). Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta Biomaterialia, 5(2), 670-679. doi:10.1016/j.actbio.2008.09.020 es_ES
dc.description.references Appelman, T. P., Mizrahi, J., Elisseeff, J. H., & Seliktar, D. (2011). The influence of biological motifs and dynamic mechanical stimulation in hydrogel scaffold systems on the phenotype of chondrocytes. Biomaterials, 32(6), 1508-1516. doi:10.1016/j.biomaterials.2010.10.017 es_ES
dc.description.references Zhang, C., Sangaj, N., Hwang, Y., Phadke, A., Chang, C.-W., & Varghese, S. (2011). Oligo(trimethylene carbonate)–poly(ethylene glycol)–oligo(trimethylene carbonate) triblock-based hydrogels for cartilage tissue engineering. Acta Biomaterialia, 7(9), 3362-3369. doi:10.1016/j.actbio.2011.05.024 es_ES
dc.description.references Mehlhorn, A. T., Zwingmann, J., Finkenzeller, G., Niemeyer, P., Dauner, M., Stark, B., … Schmal, H. (2009). Chondrogenesis of Adipose-Derived Adult Stem Cells in a Poly-Lactide-Co-Glycolide Scaffold. Tissue Engineering Part A, 15(5), 1159-1167. doi:10.1089/ten.tea.2008.0069 es_ES
dc.description.references Lee, N. K., Oh, H. J., Hong, C. M., Suh, H., & Hong, S. H. (2009). Comparison of the synthetic biodegradable polymers, polylactide (PLA), and polylactic-co-glycolic acid (PLGA) as scaffolds for artificial cartilage. Biotechnology and Bioprocess Engineering, 14(2), 180-186. doi:10.1007/s12257-008-0208-z es_ES
dc.description.references Tan, H., Chu, C. R., Payne, K. A., & Marra, K. G. (2009). Injectable in situ forming biodegradable chitosan–hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials, 30(13), 2499-2506. doi:10.1016/j.biomaterials.2008.12.080 es_ES
dc.description.references Correia, C. R., Moreira-Teixeira, L. S., Moroni, L., Reis, R. L., van Blitterswijk, C. A., Karperien, M., & Mano, J. F. (2011). Chitosan Scaffolds Containing Hyaluronic Acid for Cartilage Tissue Engineering. Tissue Engineering Part C: Methods, 17(7), 717-730. doi:10.1089/ten.tec.2010.0467 es_ES
dc.description.references Concaro, S., Nicklasson, E., Ellowsson, L., Lindahl, A., Brittberg, M., & Gatenholm, P. (2008). Effect of cell seeding concentration on the quality of tissue engineered constructs loaded with adult human articular chondrocytes. Journal of Tissue Engineering and Regenerative Medicine, 2(1), 14-21. doi:10.1002/term.60 es_ES
dc.description.references Malafaya, P. B., Santos, T. C., van Griensven, M., & Reis, R. L. (2008). Morphology, mechanical characterization and in vivo neo-vascularization of chitosan particle aggregated scaffolds architectures. Biomaterials, 29(29), 3914-3926. doi:10.1016/j.biomaterials.2008.06.023 es_ES
dc.description.references Mrugala, D., Bony, C., Neves, N., Caillot, L., Fabre, S., Moukoko, D., … Noel, D. (2007). Phenotypic and functional characterisation of ovine mesenchymal stem cells: application to a cartilage defect model. Annals of the Rheumatic Diseases, 67(3), 288-295. doi:10.1136/ard.2007.076620 es_ES
dc.description.references Salisbury Palomares, K. T., Gerstenfeld, L. C., Wigner, N. A., Lenburg, M. E., Einhorn, T. A., & Morgan, E. F. (2010). Transcriptional profiling and biochemical analysis of mechanically induced cartilaginous tissues in a rat model. Arthritis & Rheumatism, 62(4), 1108-1118. doi:10.1002/art.27343 es_ES
dc.description.references Darling, E. M., & Athanasiou, K. A. (2003). Articular Cartilage Bioreactors and Bioprocesses. Tissue Engineering, 9(1), 9-26. doi:10.1089/107632703762687492 es_ES
dc.description.references Davisson, T., Sah, R. L., & Ratcliffe, A. (2002). Perfusion Increases Cell Content and Matrix Synthesis in Chondrocyte Three-Dimensional Cultures. Tissue Engineering, 8(5), 807-816. doi:10.1089/10763270260424169 es_ES
dc.description.references Pazzano, D., Mercier, K. A., Moran, J. M., Fong, S. S., DiBiasio, D. D., Rulfs, J. X., … Bonassar, L. J. (2000). Comparison of Chondrogensis in Static and Perfused Bioreactor Culture. Biotechnology Progress, 16(5), 893-896. doi:10.1021/bp000082v es_ES
dc.description.references Gooch, K. J., Kwon, J. H., Blunk, T., Langer, R., Freed, L. E., & Vunjak-Novakovic, G. (2001). Effects of mixing intensity on tissue-engineered cartilage. Biotechnology and Bioengineering, 72(4), 402-407. doi:10.1002/1097-0290(20000220)72:4<402::aid-bit1002>3.0.co;2-q es_ES
dc.description.references Vunjak-Novakovic, G., Martin, I., Obradovic, B., Treppo, S., Grodzinsky, A. J., Langer, R., & Freed, L. E. (1999). Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. Journal of Orthopaedic Research, 17(1), 130-138. doi:10.1002/jor.1100170119 es_ES
dc.description.references Da Silva, R. M. P., Mano, J. F., & Reis, R. L. (2008). Straightforward Determination of the Degree ofN‐Acetylation of Chitosan by Means of First‐Derivative UV Spectrophotometry. Macromolecular Chemistry and Physics, 209(14), 1463-1472. doi:10.1002/macp.200800191 es_ES
dc.description.references García Cruz, D. M., Gomes, M., Reis, R. L., Moratal, D., Salmerón-Sánchez, M., Gómez Ribelles, J. L., & Mano, J. F. (2010). Differentiation of mesenchymal stem cells in chitosan scaffolds with double micro and macroporosity. Journal of Biomedical Materials Research Part A, 95A(4), 1182-1193. doi:10.1002/jbm.a.32906 es_ES
dc.description.references Washburn, E. W. (1921). The Dynamics of Capillary Flow. Physical Review, 17(3), 273-283. doi:10.1103/physrev.17.273 es_ES
dc.description.references Pérez Olmedilla, M., Garcia-Giralt, N., Pradas, M. M., Ruiz, P. B., Gómez Ribelles, J. L., Palou, E. C., & García, J. C. M. (2006). Response of human chondrocytes to a non-uniform distribution of hydrophilic domains on poly (ethyl acrylate-co-hydroxyethyl methacrylate) copolymers. Biomaterials, 27(7), 1003-1012. doi:10.1016/j.biomaterials.2005.07.030 es_ES
dc.description.references Bhosale, A. M., & Richardson, J. B. (2008). Articular cartilage: structure, injuries and review of management. British Medical Bulletin, 87(1), 77-95. doi:10.1093/bmb/ldn025 es_ES
dc.description.references Sanz-Herrera, J. A., Moreo, P., García-Aznar, J. M., & Doblaré, M. (2009). On the effect of substrate curvature on cell mechanics. Biomaterials, 30(34), 6674-6686. doi:10.1016/j.biomaterials.2009.08.053 es_ES
dc.description.references PACIFICI, M. (2006). Cellular and Molecular Mechanisms of Synovial Joint and Articular Cartilage Formation. Annals of the New York Academy of Sciences, 1068(1), 74-86. doi:10.1196/annals.1346.010 es_ES
dc.description.references Uematsu, K., Hattori, K., Ishimoto, Y., Yamauchi, J., Habata, T., Takakura, Y., … Sato, M. (2005). Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold. Biomaterials, 26(20), 4273-4279. doi:10.1016/j.biomaterials.2004.10.037 es_ES
dc.description.references GRIFFON, D., SEDIGHI, M., SCHAEFFER, D., EURELL, J., & JOHNSON, A. (2006). Chitosan scaffolds: Interconnective pore size and cartilage engineering. Acta Biomaterialia, 2(3), 313-320. doi:10.1016/j.actbio.2005.12.007 es_ES
dc.description.references Alves da Silva, M. L., Crawford, A., Mundy, J. M., Correlo, V. M., Sol, P., Bhattacharya, M., … Neves, N. M. (2010). Chitosan/polyester-based scaffolds for cartilage tissue engineering: Assessment of extracellular matrix formation. Acta Biomaterialia, 6(3), 1149-1157. doi:10.1016/j.actbio.2009.09.006 es_ES
dc.description.references Chung, C., Erickson, I. E., Mauck, R. L., & Burdick, J. A. (2008). Differential Behavior of Auricular and Articular Chondrocytes in Hyaluronic Acid Hydrogels. Tissue Engineering Part A, 14(7), 1121-1131. doi:10.1089/ten.tea.2007.0291 es_ES
dc.description.references Darling, E. M., & Athanasiou, K. A. (2005). Rapid phenotypic changes in passaged articular chondrocyte subpopulations. Journal of Orthopaedic Research, 23(2), 425-432. doi:10.1016/j.orthres.2004.08.008 es_ES
dc.description.references Brodkin, K. R., Garcı́a, A. J., & Levenston, M. E. (2004). Chondrocyte phenotypes on different extracellular matrix monolayers. Biomaterials, 25(28), 5929-5938. doi:10.1016/j.biomaterials.2004.01.044 es_ES
dc.description.references Barbero, A., Grogan, S. P., Mainil-Varlet, P., & Martin, I. (2006). Expansion on specific substrates regulates the phenotype and differentiation capacity of human articular chondrocytes. Journal of Cellular Biochemistry, 98(5), 1140-1149. doi:10.1002/jcb.20754 es_ES
dc.description.references Kheir, E., & Shaw, D. (2009). Hyaline articular cartilage. Orthopaedics and Trauma, 23(6), 450-455. doi:10.1016/j.mporth.2009.01.003 es_ES
dc.description.references Carver, S. E., & Heath, C. A. (1999). Increasing extracellular matrix production in regenerating cartilage with intermittent physiological pressure. Biotechnology and Bioengineering, 62(2), 166-174. doi:10.1002/(sici)1097-0290(19990120)62:2<166::aid-bit6>3.0.co;2-k es_ES
dc.description.references Ragetly, G., Griffon, D. J., & Chung, Y. S. (2010). The effect of type II collagen coating of chitosan fibrous scaffolds on mesenchymal stem cell adhesion and chondrogenesis. Acta Biomaterialia, 6(10), 3988-3997. doi:10.1016/j.actbio.2010.05.016 es_ES
dc.description.references Curran, S. J., Chen, R., Curran, J. M., & Hunt, J. A. (2005). Expansion of Human Chondrocytes in an Intermittent Stirred Flow Bioreactor, Using Modified Biodegradable Microspheres. Tissue Engineering, 11(9-10), 1312-1322. doi:10.1089/ten.2005.11.1312 es_ES
dc.description.references Tığlı, R. S., & Gümüşderelioğlu, M. (2009). Chondrogenesis on BMP-6 loaded chitosan scaffolds in stationary and dynamic cultures. Biotechnology and Bioengineering, 104(3), 601-610. doi:10.1002/bit.22426 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem