- -

Fibrin-chitosan composite substrate for in vitro culture of chondrocytes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fibrin-chitosan composite substrate for in vitro culture of chondrocytes

Mostrar el registro completo del ítem

Gamboa Martínez, TC.; García Cruz, DM.; Carda, C.; Gómez Ribelles, JL.; Gallego-Ferrer, G. (2013). Fibrin-chitosan composite substrate for in vitro culture of chondrocytes. Journal of Biomedical Materials Research Part A. 101(2):402-412. https://doi.org/10.1002/jbm.a.34330

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/64178

Ficheros en el ítem

Metadatos del ítem

Título: Fibrin-chitosan composite substrate for in vitro culture of chondrocytes
Autor: Gamboa Martínez, Tatiana Carolina García Cruz, Dunia Mercedes Carda, Carmen Gómez Ribelles, José Luís Gallego-Ferrer, Gloria
Entidad UPV: Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular
Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Fecha difusión:
Resumen:
The aim of this study was to develop a biocompatible monolayer substrate based on fibrin and chitosan for in vitro culture of chondrocytes. Fibrin-chitosan composite substrates combined the proved cell adhesion properties ...[+]
Palabras clave: composite , fibrin , chitosan , microspheres , chondrocyte redifferentiation
Derechos de uso: Cerrado
Fuente:
Journal of Biomedical Materials Research Part A. (issn: 1549-3296 ) (eissn: 1552-4965 )
DOI: 10.1002/jbm.a.34330
Editorial:
Wiley
Versión del editor: http://dx.doi.org/10.1002/jbm.a.34330
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//DPI2010-20399-C04-03/ES/DISEÑO Y FABRICACION DE UNA PLATAFORMA BIOMIMETICA TIPO SCAFFOLD%2FSOPORTE PARA LA REGENERACION DEL CARTILAGO ARTICULAR/
Agradecimientos:
Contract grant sponsor: Spanish Ministry; contract grant number: DPI2010-20399-C04-03
Tipo: Artículo

References

Brittberg, M., Lindahl, A., Nilsson, A., Ohlsson, C., Isaksson, O., & Peterson, L. (1994). Treatment of Deep Cartilage Defects in the Knee with Autologous Chondrocyte Transplantation. New England Journal of Medicine, 331(14), 889-895. doi:10.1056/nejm199410063311401

Marlovits, S., Zeller, P., Singer, P., Resinger, C., & Vécsei, V. (2006). Cartilage repair: Generations of autologous chondrocyte transplantation. European Journal of Radiology, 57(1), 24-31. doi:10.1016/j.ejrad.2005.08.009

Schagemann, J. C., Kurz, H., Casper, M. E., Stone, J. S., Dadsetan, M., Yu-Long, S., … Reinholz, G. G. (2010). The effect of scaffold composition on the early structural characteristics of chondrocytes and expression of adhesion molecules. Biomaterials, 31(10), 2798-2805. doi:10.1016/j.biomaterials.2009.12.037 [+]
Brittberg, M., Lindahl, A., Nilsson, A., Ohlsson, C., Isaksson, O., & Peterson, L. (1994). Treatment of Deep Cartilage Defects in the Knee with Autologous Chondrocyte Transplantation. New England Journal of Medicine, 331(14), 889-895. doi:10.1056/nejm199410063311401

Marlovits, S., Zeller, P., Singer, P., Resinger, C., & Vécsei, V. (2006). Cartilage repair: Generations of autologous chondrocyte transplantation. European Journal of Radiology, 57(1), 24-31. doi:10.1016/j.ejrad.2005.08.009

Schagemann, J. C., Kurz, H., Casper, M. E., Stone, J. S., Dadsetan, M., Yu-Long, S., … Reinholz, G. G. (2010). The effect of scaffold composition on the early structural characteristics of chondrocytes and expression of adhesion molecules. Biomaterials, 31(10), 2798-2805. doi:10.1016/j.biomaterials.2009.12.037

Kuettner, K. E., Pauli, B. U., Gall, G., Memoli, V. A., & Schenk, R. K. (1982). Synthesis of cartilage matrix by mammalian chondrocytes in vitro. I. Isolation, culture characteristics, and morphology. The Journal of Cell Biology, 93(3), 743-750. doi:10.1083/jcb.93.3.743

Banu, N., & Tsuchiya, T. (2006). Markedly different effects of hyaluronic acid and chondroitin sulfate-A on the differentiation of human articular chondrocytes in micromass and 3-D honeycomb rotation cultures. Journal of Biomedical Materials Research Part A, 80A(2), 257-267. doi:10.1002/jbm.a.30931

Bryant, S. J., Bender, R. J., Durand, K. L., & Anseth, K. S. (2004). Encapsulating chondrocytes in degrading PEG hydrogels with high modulus: Engineering gel structural changes to facilitate cartilaginous tissue production. Biotechnology and Bioengineering, 86(7), 747-755. doi:10.1002/bit.20160

Tan, G.-K., Dinnes, D. L. M., Myers, P. T., & Cooper-White, J. J. (2011). Effects of biomimetic surfaces and oxygen tension on redifferentiation of passaged human fibrochondrocytes in 2D and 3D cultures. Biomaterials, 32(24), 5600-5614. doi:10.1016/j.biomaterials.2011.04.033

Jeong, C. G., & Hollister, S. J. (2010). A comparison of the influence of material on in vitro cartilage tissue engineering with PCL, PGS, and POC 3D scaffold architecture seeded with chondrocytes. Biomaterials, 31(15), 4304-4312. doi:10.1016/j.biomaterials.2010.01.145

Byers, B. A., Mauck, R. L., Chiang, I. E., & Tuan, R. S. (2008). Transient Exposure to Transforming Growth Factor Beta 3 Under Serum-Free Conditions Enhances the Biomechanical and Biochemical Maturation of Tissue-Engineered Cartilage. Tissue Engineering Part A, 14(11), 1821-1834. doi:10.1089/ten.tea.2007.0222

Lee, J. E., Kim, K. E., Kwon, I. C., Ahn, H. J., Lee, S.-H., Cho, H., … Lee, M. C. (2004). Effects of the controlled-released TGF-β1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/glycosaminoglycan scaffold. Biomaterials, 25(18), 4163-4173. doi:10.1016/j.biomaterials.2003.10.057

Adkisson, H. D., Martin, J. A., Amendola, R. L., Milliman, C., Mauch, K. A., Katwal, A. B., … Buckwalter, J. A. (2010). The Potential of Human Allogeneic Juvenile Chondrocytes for Restoration of Articular Cartilage. The American Journal of Sports Medicine, 38(7), 1324-1333. doi:10.1177/0363546510361950

Fragonas, E., Valente, M., Pozzi-Mucelli, M., Toffanin, R., Rizzo, R., Silvestri, F., & Vittur, F. (2000). Articular cartilage repair in rabbits by using suspensions of allogenic chondrocytes in alginate. Biomaterials, 21(8), 795-801. doi:10.1016/s0142-9612(99)00241-0

De Ceuninck, F., Lesur, C., Pastoureau, P., Caliez, A., & Sabatini, M. (s. f.). Culture of Chondrocytes in Alginate Beads. Cartilage and Osteoarthritis, 015-022. doi:10.1385/1-59259-810-2:015

Elisseeff, J., McIntosh, W., Anseth, K., Riley, S., Ragan, P., & Langer, R. (2000). Photoencapsulation of chondrocytes in poly(ethylene oxide)-based semi-interpenetrating networks. Journal of Biomedical Materials Research, 51(2), 164-171. doi:10.1002/(sici)1097-4636(200008)51:2<164::aid-jbm4>3.0.co;2-w

Bryant, S. J., & Anseth, K. S. (2001). The effects of scaffold thickness on tissue engineered cartilage in photocrosslinked poly(ethylene oxide) hydrogels. Biomaterials, 22(6), 619-626. doi:10.1016/s0142-9612(00)00225-8

Genes, N. G., Rowley, J. A., Mooney, D. J., & Bonassar, L. J. (2004). Effect of substrate mechanics on chondrocyte adhesion to modified alginate surfaces. Archives of Biochemistry and Biophysics, 422(2), 161-167. doi:10.1016/j.abb.2003.11.023

Taguchi, T., Xu, L., Kobayashi, H., Taniguchi, A., Kataoka, K., & Tanaka, J. (2005). Encapsulation of chondrocytes in injectable alkali-treated collagen gels prepared using poly(ethylene glycol)-based 4-armed star polymer. Biomaterials, 26(11), 1247-1252. doi:10.1016/j.biomaterials.2004.04.029

Dare, E. V., Griffith, M., Poitras, P., Wang, T., Dervin, G. F., Giulivi, A., & Hincke, M. T. (2009). Fibrin Sealants from Fresh or Fresh/Frozen Plasma as Scaffolds for In Vitro Articular Cartilage Regeneration. Tissue Engineering Part A, 15(8), 2285-2297. doi:10.1089/ten.tea.2008.0228

Eyrich, D., Brandl, F., Appel, B., Wiese, H., Maier, G., Wenzel, M., … Blunk, T. (2007). Long-term stable fibrin gels for cartilage engineering. Biomaterials, 28(1), 55-65. doi:10.1016/j.biomaterials.2006.08.027

Brodkin, K. R., Garcı́a, A. J., & Levenston, M. E. (2004). Chondrocyte phenotypes on different extracellular matrix monolayers. Biomaterials, 25(28), 5929-5938. doi:10.1016/j.biomaterials.2004.01.044

Chang, C. (2003). Gelatin–chondroitin–hyaluronan tri-copolymer scaffold for cartilage tissue engineering. Biomaterials, 24(26), 4853-4858. doi:10.1016/s0142-9612(03)00383-1

Chou, C.-H., Cheng, W. T. K., Kuo, T.-F., Sun, J.-S., Lin, F.-H., & Tsai, J.-C. (2007). Fibrin glue mixed with gelatin/hyaluronic acid/chondroitin-6-sulfate tri-copolymer for articular cartilage tissue engineering: The results of real-time polymerase chain reaction. Journal of Biomedical Materials Research Part A, 82A(3), 757-767. doi:10.1002/jbm.a.31186

Tan, H., Chu, C. R., Payne, K. A., & Marra, K. G. (2009). Injectable in situ forming biodegradable chitosan–hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials, 30(13), 2499-2506. doi:10.1016/j.biomaterials.2008.12.080

Silva, S. S., Motta, A., Rodrigues, M. T., Pinheiro, A. F. M., Gomes, M. E., Mano, J. F., … Migliaresi, C. (2008). Novel Genipin-Cross-Linked Chitosan/Silk Fibroin Sponges for Cartilage Engineering Strategies. Biomacromolecules, 9(10), 2764-2774. doi:10.1021/bm800874q

Hu, X., Li, D., & Gao, C. (2011). Chemically cross-linked chitosan hydrogel loaded with gelatin for chondrocyte encapsulation. Biotechnology Journal, 6(11), 1388-1396. doi:10.1002/biot.201100017

Francis Suh, J.-K., & Matthew, H. W. . (2000). Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials, 21(24), 2589-2598. doi:10.1016/s0142-9612(00)00126-5

Hokugo, A., Takamoto, T., & Tabata, Y. (2006). Preparation of hybrid scaffold from fibrin and biodegradable polymer fiber. Biomaterials, 27(1), 61-67. doi:10.1016/j.biomaterials.2005.05.030

Terasawa, F., Kani, S., Hongo, M., & Okumura, N. (2006). In vitro fibrin clot formation and fibrinolysis using heterozygous plasma fibrinogen from γAsn319, Asp320 deletion dysfibrinogen, Otsu I. Thrombosis Research, 118(5), 651-661. doi:10.1016/j.thromres.2005.10.013

Yuan, Y., Chesnutt, B. M., Utturkar, G., Haggard, W. O., Yang, Y., Ong, J. L., & Bumgardner, J. D. (2007). The effect of cross-linking of chitosan microspheres with genipin on protein release. Carbohydrate Polymers, 68(3), 561-567. doi:10.1016/j.carbpol.2006.10.023

Pérez Olmedilla, M., Garcia-Giralt, N., Pradas, M. M., Ruiz, P. B., Gómez Ribelles, J. L., Palou, E. C., & García, J. C. M. (2006). Response of human chondrocytes to a non-uniform distribution of hydrophilic domains on poly (ethyl acrylate-co-hydroxyethyl methacrylate) copolymers. Biomaterials, 27(7), 1003-1012. doi:10.1016/j.biomaterials.2005.07.030

Dare, E. V., Griffith, M., Poitras, P., Kaupp, J. A., Waldman, S. D., Carlsson, D. J., … Hincke, M. T. (2009). Genipin Cross-Linked Fibrin Hydrogels for in vitro Human Articular Cartilage Tissue-Engineered Regeneration. Cells Tissues Organs, 190(6), 313-325. doi:10.1159/000209230

Zhao, H., Ma, L., Gao, C., & Shen, J. (2009). A composite scaffold of PLGA microspheres/fibrin gel for cartilage tissue engineering: Fabrication, physical properties, and cell responsiveness. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 88B(1), 240-249. doi:10.1002/jbm.b.31174

Silva, S. S., Luna, S. M., Gomes, M. E., Benesch, J., Pashkuleva, I., Mano, J. F., & Reis, R. L. (2008). Plasma Surface Modification of Chitosan Membranes: Characterization and Preliminary Cell Response Studies. Macromolecular Bioscience, 8(6), 568-576. doi:10.1002/mabi.200700264

Zhu, X., Chian, K. S., Chan-Park, M. B. E., & Lee, S. T. (2005). Effect of argon-plasma treatment on proliferation of human-skin-derived fibroblast on chitosan membranein vitro. Journal of Biomedical Materials Research Part A, 73A(3), 264-274. doi:10.1002/jbm.a.30211

García Cruz, D. M., Coutinho, D. F., Costa Martinez, E., Mano, J. F., Gómez Ribelles, J. L., & Salmerón Sánchez, M. (2008). Blending polysaccharides with biodegradable polymers. II. Structure and biological response of chitosan/polycaprolactone blends. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 87B(2), 544-554. doi:10.1002/jbm.b.31142

Freyria, A.-M., Cortial, D., Ronzière, M.-C., Guerret, S., & Herbage, D. (2004). Influence of medium composition, static and stirred conditions on the proliferation of and matrix protein expression of bovine articular chondrocytes cultured in a 3-D collagen scaffold. Biomaterials, 25(4), 687-697. doi:10.1016/s0142-9612(03)00568-4

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem