- -

Fibrin-chitosan composite substrate for in vitro culture of chondrocytes

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Fibrin-chitosan composite substrate for in vitro culture of chondrocytes

Show simple item record

Files in this item

dc.contributor.author Gamboa Martínez, Tatiana Carolina es_ES
dc.contributor.author García Cruz, Dunia Mercedes es_ES
dc.contributor.author Carda, Carmen es_ES
dc.contributor.author Gómez Ribelles, José Luís es_ES
dc.contributor.author Gallego Ferrer, Gloria es_ES
dc.date.accessioned 2016-05-17T07:23:49Z
dc.date.available 2016-05-17T07:23:49Z
dc.date.issued 2013-02
dc.identifier.issn 1549-3296
dc.identifier.uri http://hdl.handle.net/10251/64178
dc.description.abstract The aim of this study was to develop a biocompatible monolayer substrate based on fibrin and chitosan for in vitro culture of chondrocytes. Fibrin-chitosan composite substrates combined the proved cell adhesion properties of fibrin with the hydrophilicity and poor adhesion capacity of chitosan. Chitosan microspheres were produced by coacervation method, agglomerated within a fibrin network and subsequently crosslinked with genipin. The composite substrate was stable for 28 days of culture due to the high crosslinking density. Human chondrocytes cultured on the composite substrate were viable during the culture period. At the end of culture time (28 days) the composite substrate showed low cellular proliferation, 41% more collagen type II and 13% more production of sulfated glycosaminoglycans with respect to the amounts found at 14 days. The study revealed that dedifferentiated chondrocytes cultured in monolayer on the composite substrate can re-acquire characteristics of differentiated cells without using three-dimensional substrates or chondrogenic media. es_ES
dc.description.sponsorship Contract grant sponsor: Spanish Ministry; contract grant number: DPI2010-20399-C04-03 en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Journal of Biomedical Materials Research Part A es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject composite es_ES
dc.subject fibrin es_ES
dc.subject chitosan es_ES
dc.subject microspheres es_ES
dc.subject chondrocyte redifferentiation es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Fibrin-chitosan composite substrate for in vitro culture of chondrocytes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/jbm.a.34330
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2010-20399-C04-03/ES/DISEÑO Y FABRICACION DE UNA PLATAFORMA BIOMIMETICA TIPO SCAFFOLD%2FSOPORTE PARA LA REGENERACION DEL CARTILAGO ARTICULAR/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Gamboa Martínez, TC.; García Cruz, DM.; Carda, C.; Gómez Ribelles, JL.; Gallego Ferrer, G. (2013). Fibrin-chitosan composite substrate for in vitro culture of chondrocytes. Journal of Biomedical Materials Research Part A. 101(2):402-412. https://doi.org/10.1002/jbm.a.34330 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/jbm.a.34330 es_ES
dc.description.upvformatpinicio 402 es_ES
dc.description.upvformatpfin 412 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 101 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 260192 es_ES
dc.identifier.eissn 1552-4965
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Brittberg, M., Lindahl, A., Nilsson, A., Ohlsson, C., Isaksson, O., & Peterson, L. (1994). Treatment of Deep Cartilage Defects in the Knee with Autologous Chondrocyte Transplantation. New England Journal of Medicine, 331(14), 889-895. doi:10.1056/nejm199410063311401 es_ES
dc.description.references Marlovits, S., Zeller, P., Singer, P., Resinger, C., & Vécsei, V. (2006). Cartilage repair: Generations of autologous chondrocyte transplantation. European Journal of Radiology, 57(1), 24-31. doi:10.1016/j.ejrad.2005.08.009 es_ES
dc.description.references Schagemann, J. C., Kurz, H., Casper, M. E., Stone, J. S., Dadsetan, M., Yu-Long, S., … Reinholz, G. G. (2010). The effect of scaffold composition on the early structural characteristics of chondrocytes and expression of adhesion molecules. Biomaterials, 31(10), 2798-2805. doi:10.1016/j.biomaterials.2009.12.037 es_ES
dc.description.references Kuettner, K. E., Pauli, B. U., Gall, G., Memoli, V. A., & Schenk, R. K. (1982). Synthesis of cartilage matrix by mammalian chondrocytes in vitro. I. Isolation, culture characteristics, and morphology. The Journal of Cell Biology, 93(3), 743-750. doi:10.1083/jcb.93.3.743 es_ES
dc.description.references Banu, N., & Tsuchiya, T. (2006). Markedly different effects of hyaluronic acid and chondroitin sulfate-A on the differentiation of human articular chondrocytes in micromass and 3-D honeycomb rotation cultures. Journal of Biomedical Materials Research Part A, 80A(2), 257-267. doi:10.1002/jbm.a.30931 es_ES
dc.description.references Bryant, S. J., Bender, R. J., Durand, K. L., & Anseth, K. S. (2004). Encapsulating chondrocytes in degrading PEG hydrogels with high modulus: Engineering gel structural changes to facilitate cartilaginous tissue production. Biotechnology and Bioengineering, 86(7), 747-755. doi:10.1002/bit.20160 es_ES
dc.description.references Tan, G.-K., Dinnes, D. L. M., Myers, P. T., & Cooper-White, J. J. (2011). Effects of biomimetic surfaces and oxygen tension on redifferentiation of passaged human fibrochondrocytes in 2D and 3D cultures. Biomaterials, 32(24), 5600-5614. doi:10.1016/j.biomaterials.2011.04.033 es_ES
dc.description.references Jeong, C. G., & Hollister, S. J. (2010). A comparison of the influence of material on in vitro cartilage tissue engineering with PCL, PGS, and POC 3D scaffold architecture seeded with chondrocytes. Biomaterials, 31(15), 4304-4312. doi:10.1016/j.biomaterials.2010.01.145 es_ES
dc.description.references Byers, B. A., Mauck, R. L., Chiang, I. E., & Tuan, R. S. (2008). Transient Exposure to Transforming Growth Factor Beta 3 Under Serum-Free Conditions Enhances the Biomechanical and Biochemical Maturation of Tissue-Engineered Cartilage. Tissue Engineering Part A, 14(11), 1821-1834. doi:10.1089/ten.tea.2007.0222 es_ES
dc.description.references Lee, J. E., Kim, K. E., Kwon, I. C., Ahn, H. J., Lee, S.-H., Cho, H., … Lee, M. C. (2004). Effects of the controlled-released TGF-β1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/glycosaminoglycan scaffold. Biomaterials, 25(18), 4163-4173. doi:10.1016/j.biomaterials.2003.10.057 es_ES
dc.description.references Adkisson, H. D., Martin, J. A., Amendola, R. L., Milliman, C., Mauch, K. A., Katwal, A. B., … Buckwalter, J. A. (2010). The Potential of Human Allogeneic Juvenile Chondrocytes for Restoration of Articular Cartilage. The American Journal of Sports Medicine, 38(7), 1324-1333. doi:10.1177/0363546510361950 es_ES
dc.description.references Fragonas, E., Valente, M., Pozzi-Mucelli, M., Toffanin, R., Rizzo, R., Silvestri, F., & Vittur, F. (2000). Articular cartilage repair in rabbits by using suspensions of allogenic chondrocytes in alginate. Biomaterials, 21(8), 795-801. doi:10.1016/s0142-9612(99)00241-0 es_ES
dc.description.references De Ceuninck, F., Lesur, C., Pastoureau, P., Caliez, A., & Sabatini, M. (s. f.). Culture of Chondrocytes in Alginate Beads. Cartilage and Osteoarthritis, 015-022. doi:10.1385/1-59259-810-2:015 es_ES
dc.description.references Elisseeff, J., McIntosh, W., Anseth, K., Riley, S., Ragan, P., & Langer, R. (2000). Photoencapsulation of chondrocytes in poly(ethylene oxide)-based semi-interpenetrating networks. Journal of Biomedical Materials Research, 51(2), 164-171. doi:10.1002/(sici)1097-4636(200008)51:2<164::aid-jbm4>3.0.co;2-w es_ES
dc.description.references Bryant, S. J., & Anseth, K. S. (2001). The effects of scaffold thickness on tissue engineered cartilage in photocrosslinked poly(ethylene oxide) hydrogels. Biomaterials, 22(6), 619-626. doi:10.1016/s0142-9612(00)00225-8 es_ES
dc.description.references Genes, N. G., Rowley, J. A., Mooney, D. J., & Bonassar, L. J. (2004). Effect of substrate mechanics on chondrocyte adhesion to modified alginate surfaces. Archives of Biochemistry and Biophysics, 422(2), 161-167. doi:10.1016/j.abb.2003.11.023 es_ES
dc.description.references Taguchi, T., Xu, L., Kobayashi, H., Taniguchi, A., Kataoka, K., & Tanaka, J. (2005). Encapsulation of chondrocytes in injectable alkali-treated collagen gels prepared using poly(ethylene glycol)-based 4-armed star polymer. Biomaterials, 26(11), 1247-1252. doi:10.1016/j.biomaterials.2004.04.029 es_ES
dc.description.references Dare, E. V., Griffith, M., Poitras, P., Wang, T., Dervin, G. F., Giulivi, A., & Hincke, M. T. (2009). Fibrin Sealants from Fresh or Fresh/Frozen Plasma as Scaffolds for In Vitro Articular Cartilage Regeneration. Tissue Engineering Part A, 15(8), 2285-2297. doi:10.1089/ten.tea.2008.0228 es_ES
dc.description.references Eyrich, D., Brandl, F., Appel, B., Wiese, H., Maier, G., Wenzel, M., … Blunk, T. (2007). Long-term stable fibrin gels for cartilage engineering. Biomaterials, 28(1), 55-65. doi:10.1016/j.biomaterials.2006.08.027 es_ES
dc.description.references Brodkin, K. R., Garcı́a, A. J., & Levenston, M. E. (2004). Chondrocyte phenotypes on different extracellular matrix monolayers. Biomaterials, 25(28), 5929-5938. doi:10.1016/j.biomaterials.2004.01.044 es_ES
dc.description.references Chang, C. (2003). Gelatin–chondroitin–hyaluronan tri-copolymer scaffold for cartilage tissue engineering. Biomaterials, 24(26), 4853-4858. doi:10.1016/s0142-9612(03)00383-1 es_ES
dc.description.references Chou, C.-H., Cheng, W. T. K., Kuo, T.-F., Sun, J.-S., Lin, F.-H., & Tsai, J.-C. (2007). Fibrin glue mixed with gelatin/hyaluronic acid/chondroitin-6-sulfate tri-copolymer for articular cartilage tissue engineering: The results of real-time polymerase chain reaction. Journal of Biomedical Materials Research Part A, 82A(3), 757-767. doi:10.1002/jbm.a.31186 es_ES
dc.description.references Tan, H., Chu, C. R., Payne, K. A., & Marra, K. G. (2009). Injectable in situ forming biodegradable chitosan–hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials, 30(13), 2499-2506. doi:10.1016/j.biomaterials.2008.12.080 es_ES
dc.description.references Silva, S. S., Motta, A., Rodrigues, M. T., Pinheiro, A. F. M., Gomes, M. E., Mano, J. F., … Migliaresi, C. (2008). Novel Genipin-Cross-Linked Chitosan/Silk Fibroin Sponges for Cartilage Engineering Strategies. Biomacromolecules, 9(10), 2764-2774. doi:10.1021/bm800874q es_ES
dc.description.references Hu, X., Li, D., & Gao, C. (2011). Chemically cross-linked chitosan hydrogel loaded with gelatin for chondrocyte encapsulation. Biotechnology Journal, 6(11), 1388-1396. doi:10.1002/biot.201100017 es_ES
dc.description.references Francis Suh, J.-K., & Matthew, H. W. . (2000). Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials, 21(24), 2589-2598. doi:10.1016/s0142-9612(00)00126-5 es_ES
dc.description.references Hokugo, A., Takamoto, T., & Tabata, Y. (2006). Preparation of hybrid scaffold from fibrin and biodegradable polymer fiber. Biomaterials, 27(1), 61-67. doi:10.1016/j.biomaterials.2005.05.030 es_ES
dc.description.references Terasawa, F., Kani, S., Hongo, M., & Okumura, N. (2006). In vitro fibrin clot formation and fibrinolysis using heterozygous plasma fibrinogen from γAsn319, Asp320 deletion dysfibrinogen, Otsu I. Thrombosis Research, 118(5), 651-661. doi:10.1016/j.thromres.2005.10.013 es_ES
dc.description.references Yuan, Y., Chesnutt, B. M., Utturkar, G., Haggard, W. O., Yang, Y., Ong, J. L., & Bumgardner, J. D. (2007). The effect of cross-linking of chitosan microspheres with genipin on protein release. Carbohydrate Polymers, 68(3), 561-567. doi:10.1016/j.carbpol.2006.10.023 es_ES
dc.description.references Pérez Olmedilla, M., Garcia-Giralt, N., Pradas, M. M., Ruiz, P. B., Gómez Ribelles, J. L., Palou, E. C., & García, J. C. M. (2006). Response of human chondrocytes to a non-uniform distribution of hydrophilic domains on poly (ethyl acrylate-co-hydroxyethyl methacrylate) copolymers. Biomaterials, 27(7), 1003-1012. doi:10.1016/j.biomaterials.2005.07.030 es_ES
dc.description.references Dare, E. V., Griffith, M., Poitras, P., Kaupp, J. A., Waldman, S. D., Carlsson, D. J., … Hincke, M. T. (2009). Genipin Cross-Linked Fibrin Hydrogels for in vitro Human Articular Cartilage Tissue-Engineered Regeneration. Cells Tissues Organs, 190(6), 313-325. doi:10.1159/000209230 es_ES
dc.description.references Zhao, H., Ma, L., Gao, C., & Shen, J. (2009). A composite scaffold of PLGA microspheres/fibrin gel for cartilage tissue engineering: Fabrication, physical properties, and cell responsiveness. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 88B(1), 240-249. doi:10.1002/jbm.b.31174 es_ES
dc.description.references Silva, S. S., Luna, S. M., Gomes, M. E., Benesch, J., Pashkuleva, I., Mano, J. F., & Reis, R. L. (2008). Plasma Surface Modification of Chitosan Membranes: Characterization and Preliminary Cell Response Studies. Macromolecular Bioscience, 8(6), 568-576. doi:10.1002/mabi.200700264 es_ES
dc.description.references Zhu, X., Chian, K. S., Chan-Park, M. B. E., & Lee, S. T. (2005). Effect of argon-plasma treatment on proliferation of human-skin-derived fibroblast on chitosan membranein vitro. Journal of Biomedical Materials Research Part A, 73A(3), 264-274. doi:10.1002/jbm.a.30211 es_ES
dc.description.references García Cruz, D. M., Coutinho, D. F., Costa Martinez, E., Mano, J. F., Gómez Ribelles, J. L., & Salmerón Sánchez, M. (2008). Blending polysaccharides with biodegradable polymers. II. Structure and biological response of chitosan/polycaprolactone blends. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 87B(2), 544-554. doi:10.1002/jbm.b.31142 es_ES
dc.description.references Freyria, A.-M., Cortial, D., Ronzière, M.-C., Guerret, S., & Herbage, D. (2004). Influence of medium composition, static and stirred conditions on the proliferation of and matrix protein expression of bovine articular chondrocytes cultured in a 3-D collagen scaffold. Biomaterials, 25(4), 687-697. doi:10.1016/s0142-9612(03)00568-4 es_ES


This item appears in the following Collection(s)

Show simple item record