Mostrar el registro sencillo del ítem
dc.contributor.author | Sencadas, Vitor Joao Gomes Da Silva | es_ES |
dc.contributor.author | Costa, C.M. | es_ES |
dc.contributor.author | Botelho, G. | es_ES |
dc.contributor.author | Caparrós, C. | es_ES |
dc.contributor.author | Ribeiro, C. | es_ES |
dc.contributor.author | Gómez Ribelles, José Luís | es_ES |
dc.contributor.author | Lanceros-Mendez, Senentxu | es_ES |
dc.date.accessioned | 2016-05-17T07:28:01Z | |
dc.date.available | 2016-05-17T07:28:01Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 0022-2348 | |
dc.identifier.uri | http://hdl.handle.net/10251/64183 | |
dc.description.abstract | [EN] Poly(lactic acid) (PLA) electrospun membranes were obtained by electrospinning and characterized by scanning electron microscopy (SEM) and thermal analysis. The polymer membranes showed a random fiber distribution with a mean diameter of 1µm (±300 nm). Differential scanning calorimetry (DSC) experiments showed that the membranes had a glass transition, cold crystallization, and melting temperatures of 54, 90, and 151◦C, respectively. The kinetic study of thermal degradation of PLA under a nitrogen atmosphere was performed by means of thermogravimetry (TGA). It was found that the thermal decomposition kinetics of PLA could be interpreted in terms of a multi-step degradation mechanism. Several theoretical models were applied to the TGA data. The activation energies obtained by the Broido and Ozawa–Flynn–Wall (OFW) models were in good agreement with the value of the activation energy calculated by the Kissinger method | es_ES |
dc.description.sponsorship | The authors thank the Portuguese Foundation for Science and Technology (FCT) for finantial support under grants NANO/NMed-SD/0156/2007 and PTDC/CTM/73030/2006. V. Sencadas thanks the FCT for the SFRH/BPD/63148/2009 grant. C. Ribeiro thanks the INL for a PhD grant. J. L. Gomez-Ribelles acknowledges the support of the Spanish Ministry of Education through project No. MAT2007-66759-C03-01 (including the FEDER financial support, and funding in the Centro de Investigacion Principe Felipe in the field of Regenerative Medicine through the collaboration agreement between the Conselleria de Sanidad (Generalitat Valenciana), and the Instituto de Salud Carlos III (Ministry of Science and Innovation). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | Journal of Macromolecular Science Part B Physics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | activation energy | es_ES |
dc.subject | electrospinning | es_ES |
dc.subject | electrospun fibers | es_ES |
dc.subject | poly(lactic acid) | es_ES |
dc.subject | polymer characterization | es_ES |
dc.subject | TGA | es_ES |
dc.subject | thermal degradation kinetics | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Thermal Properties of Electrospun Poly(Lactic Acid) Membranes | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/00222348.2011.597325 | |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F63148%2F2009/PT/ELECTROACTIVE MATERIALS BASED POROUS MEMBRANES AND SCAFFOLDS FOR BIOMEDICAL APPLICATIONS/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//MAT2007-66759-C03-01/ES/NUEVOS SUBSTRATOS POLIMERICOS BIORREABSORBIBLES PARA LA REGENERACION DEL CARTILAGO ARTICULAR/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT/5876-PPCDTI/109368/PT/“Smart joint implants using bionanocomposites-(SIMBIO)”/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT/5876-PPCDTI/73030/PT/Polarization-driven self-assembly of organic and biomaterials using ferroelectric polymers/ | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular | es_ES |
dc.description.bibliographicCitation | Sencadas, VJGDS.; Costa, C.; Botelho, G.; Caparrós, C.; Ribeiro, C.; Gómez Ribelles, JL.; Lanceros-Mendez, S. (2012). Thermal Properties of Electrospun Poly(Lactic Acid) Membranes. Journal of Macromolecular Science Part B Physics. 51(1-3):411-424. https://doi.org/10.1080/00222348.2011.597325 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1080/00222348.2011.597325 | es_ES |
dc.description.upvformatpinicio | 411 | es_ES |
dc.description.upvformatpfin | 424 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 51 | es_ES |
dc.description.issue | 1-3 | es_ES |
dc.relation.senia | 239468 | es_ES |
dc.identifier.eissn | 1525-609X | |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Conselleria de Sanitat Universal i Salut Pública de la Generalitat Valenciana | es_ES |
dc.contributor.funder | Instituto de Salud Carlos III | es_ES |
dc.contributor.funder | Fundação para a Ciência e a Tecnologia, Portugal | |
dc.description.references | Nijenhuis, A. J., Grijpma, D. W., & Pennings, A. J. (1992). Lewis acid catalyzed polymerization of L-lactide. Kinetics and mechanism of the bulk polymerization. Macromolecules, 25(24), 6419-6424. doi:10.1021/ma00050a006 | es_ES |
dc.description.references | Tsuji, H., Daimon, H., & Fujie, K. (2003). A New Strategy for Recycling and Preparation of Poly(l-lactic acid): Hydrolysis in the Melt. Biomacromolecules, 4(3), 835-840. doi:10.1021/bm034060j | es_ES |
dc.description.references | Lim, L.-T., Auras, R., & Rubino, M. (2008). Processing technologies for poly(lactic acid). Progress in Polymer Science, 33(8), 820-852. doi:10.1016/j.progpolymsci.2008.05.004 | es_ES |
dc.description.references | Doshi, J., & Reneker, D. H. (1995). Electrospinning process and applications of electrospun fibers. Journal of Electrostatics, 35(2-3), 151-160. doi:10.1016/0304-3886(95)00041-8 | es_ES |
dc.description.references | Ramakrishna, S., Fujihara, K., Teo, W.-E., Lim, T.-C., & Ma, Z. (2005). An Introduction to Electrospinning and Nanofibers. doi:10.1142/9789812567611 | es_ES |
dc.description.references | Sabir, M. I., Xu, X., & Li, L. (2009). A review on biodegradable polymeric materials for bone tissue engineering applications. Journal of Materials Science, 44(21), 5713-5724. doi:10.1007/s10853-009-3770-7 | es_ES |
dc.description.references | Yang, F., Murugan, R., Ramakrishna, S., Wang, X., Ma, Y.-X., & Wang, S. (2004). Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials, 25(10), 1891-1900. doi:10.1016/j.biomaterials.2003.08.062 | es_ES |
dc.description.references | Li, W.-J., Tuli, R., Okafor, C., Derfoul, A., Danielson, K. G., Hall, D. J., & Tuan, R. S. (2005). A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials, 26(6), 599-609. doi:10.1016/j.biomaterials.2004.03.005 | es_ES |
dc.description.references | Shin, M., Yoshimoto, H., & Vacanti, J. P. (2004). In Vivo Bone Tissue Engineering Using Mesenchymal Stem Cells on a Novel Electrospun Nanofibrous Scaffold. Tissue Engineering, 10(1-2), 33-41. doi:10.1089/107632704322791673 | es_ES |
dc.description.references | Shin, M., Ishii, O., Sueda, T., & Vacanti, J. P. (2004). Contractile cardiac grafts using a novel nanofibrous mesh. Biomaterials, 25(17), 3717-3723. doi:10.1016/j.biomaterials.2003.10.055 | es_ES |
dc.description.references | Zhang, Y., Lim, C. T., Ramakrishna, S., & Huang, Z.-M. (2005). Recent development of polymer nanofibers for biomedical and biotechnological applications. Journal of Materials Science: Materials in Medicine, 16(10), 933-946. doi:10.1007/s10856-005-4428-x | es_ES |
dc.description.references | Kopinke, F.-D., Remmler, M., Mackenzie, K., Möder, M., & Wachsen, O. (1996). Thermal decomposition of biodegradable polyesters—II. Poly(lactic acid). Polymer Degradation and Stability, 53(3), 329-342. doi:10.1016/0141-3910(96)00102-4 | es_ES |
dc.description.references | Kopinke, F.-D., & Mackenzie, K. (1997). Mechanistic aspects of the thermal degradation of poly(lactic acid) and poly(β-hydroxybutyric acid). Journal of Analytical and Applied Pyrolysis, 40-41, 43-53. doi:10.1016/s0165-2370(97)00022-3 | es_ES |
dc.description.references | Cam, D., & Marucci, M. (1997). Influence of residual monomers and metals on poly (l-lactide) thermal stability. Polymer, 38(8), 1879-1884. doi:10.1016/s0032-3861(96)00711-2 | es_ES |
dc.description.references | McNeill, I. C., & Leiper, H. A. (1985). Degradation studies of some polyesters and polycarbonates—1. Polylactide: General features of the degradation under programmed heating conditions. Polymer Degradation and Stability, 11(3), 267-285. doi:10.1016/0141-3910(85)90050-3 | es_ES |
dc.description.references | Babanalbandi, A., Hill, D. J. T., Hunter, D. S., & Kettle, L. (1999). Thermal stability of poly(lactic acid) before and after γ-radiolysis. Polymer International, 48(10), 980-984. doi:10.1002/(sici)1097-0126(199910)48:10<980::aid-pi257>3.0.co;2-b | es_ES |
dc.description.references | Aoyagi, Y., Yamashita, K., & Doi, Y. (2002). Thermal degradation of poly[(R)-3-hydroxybutyrate], poly[ε-caprolactone], and poly[(S)-lactide]. Polymer Degradation and Stability, 76(1), 53-59. doi:10.1016/s0141-3910(01)00265-8 | es_ES |
dc.description.references | Zou, H., Yi, C., Wang, L., Liu, H., & Xu, W. (2009). Thermal degradation of poly(lactic acid) measured by thermogravimetry coupled to Fourier transform infrared spectroscopy. Journal of Thermal Analysis and Calorimetry, 97(3), 929-935. doi:10.1007/s10973-009-0121-5 | es_ES |
dc.description.references | Turi, E. 1997. “Thermal characterization of polymeric materials”. New York: Academic Press. | es_ES |
dc.description.references | Sencadas, V., Lanceros-Méndez, S., & Mano, J. . (2004). Effect of the mechanical stretching on the ferroelectric properties of a (VDF/TrFE) (75/25) copolymer film. Solid State Communications, 129(1), 5-8. doi:10.1016/j.ssc.2003.07.010 | es_ES |
dc.description.references | Flynn, J. H., & Wall, L. A. (1966). A quick, direct method for the determination of activation energy from thermogravimetric data. Journal of Polymer Science Part B: Polymer Letters, 4(5), 323-328. doi:10.1002/pol.1966.110040504 | es_ES |
dc.description.references | Ozawa, T. (1965). A New Method of Analyzing Thermogravimetric Data. Bulletin of the Chemical Society of Japan, 38(11), 1881-1886. doi:10.1246/bcsj.38.1881 | es_ES |
dc.description.references | Chrissafis, K., Paraskevopoulos, K. M., & Bikiaris, D. N. (2005). Thermal degradation mechanism of poly(ethylene succinate) and poly(butylene succinate): Comparative study. Thermochimica Acta, 435(2), 142-150. doi:10.1016/j.tca.2005.05.011 | es_ES |
dc.description.references | Chrissafis, K., Paraskevopoulos, K. M., & Bikiaris, D. N. (2006). Thermal degradation kinetics of the biodegradable aliphatic polyester, poly(propylene succinate). Polymer Degradation and Stability, 91(1), 60-68. doi:10.1016/j.polymdegradstab.2005.04.028 | es_ES |
dc.description.references | Hamciuc, C., Vlad-Bubulac, T., Petreus, O., & Lisa, G. (2007). Kinetics of thermal degradation in non-isothermal conditions of some phosphorus-containing polyesters and polyesterimides. European Polymer Journal, 43(3), 980-988. doi:10.1016/j.eurpolymj.2006.12.018 | es_ES |
dc.description.references | Kissinger, H. E. (1956). Variation of peak temperature with heating rate in differential thermal analysis. Journal of Research of the National Bureau of Standards, 57(4), 217. doi:10.6028/jres.057.026 | es_ES |
dc.description.references | Kissinger, H. E. (1957). Reaction Kinetics in Differential Thermal Analysis. Analytical Chemistry, 29(11), 1702-1706. doi:10.1021/ac60131a045 | es_ES |
dc.description.references | Zhou, H., Green, T. B., & Joo, Y. L. (2006). The thermal effects on electrospinning of polylactic acid melts. Polymer, 47(21), 7497-7505. doi:10.1016/j.polymer.2006.08.042 | es_ES |
dc.description.references | Zeng, J., Chen, X., Liang, Q., Xu, X., & Jing, X. (2004). Enzymatic Degradation of Poly(L-lactide) and Poly(?-caprolactone) Electrospun Fibers. Macromolecular Bioscience, 4(12), 1118-1125. doi:10.1002/mabi.200400092 | es_ES |
dc.description.references | Inai, R., Kotaki, M., & Ramakrishna, S. (2005). Deformation behavior of electrospun poly(L-lactide-co-ɛ-caprolactone) nonwoven membranes under uniaxial tensile loading. Journal of Polymer Science Part B: Polymer Physics, 43(22), 3205-3212. doi:10.1002/polb.20457 | es_ES |
dc.description.references | Migliaresi, C., Cohn, D., De Lollis, A., & Fambri, L. (1991). Dynamic mechanical and calorimetric analysis of compression-molded PLLA of different molecular weights: Effect of thermal treatments. Journal of Applied Polymer Science, 43(1), 83-95. doi:10.1002/app.1991.070430109 | es_ES |
dc.description.references | Hernández Sánchez, F., Molina Mateo, J., Romero Colomer, F. J., Salmerón Sánchez, M., Gómez Ribelles, J. L., & Mano, J. F. (2005). Influence of Low-Temperature Nucleation on the Crystallization Process of Poly(l-lactide). Biomacromolecules, 6(6), 3283-3290. doi:10.1021/bm050323t | es_ES |
dc.description.references | Salmerón Sánchez, M., Mathot, V. B. F., Vanden Poel, G., & Gómez Ribelles, J. L. (2007). Effect of the Cooling Rate on the Nucleation Kinetics of Poly(l-Lactic Acid) and Its Influence on Morphology. Macromolecules, 40(22), 7989-7997. doi:10.1021/ma0712706 | es_ES |
dc.description.references | Hatakeyama, T. and Quinn, F. X. 1994. “Thermal analysis, fundamentals and applications to polymer science”. Chichester: John Wiley & Sons. | es_ES |
dc.description.references | Jang, B. N., & Wilkie, C. A. (2005). The thermal degradation of bisphenol A polycarbonate in air. Thermochimica Acta, 426(1-2), 73-84. doi:10.1016/j.tca.2004.07.023 | es_ES |
dc.description.references | Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. 1999. “Numerical recipes in fortran 77: the art of scientific computing”. Cambridge: Cambridge University Press. | es_ES |
dc.description.references | Vyazovkin, S., & Sbirrazzuoli, N. (2006). Isoconversional Kinetic Analysis of Thermally Stimulated Processes in Polymers. Macromolecular Rapid Communications, 27(18), 1515-1532. doi:10.1002/marc.200600404 | es_ES |