- -

Thermal Properties of Electrospun Poly(Lactic Acid) Membranes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Thermal Properties of Electrospun Poly(Lactic Acid) Membranes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sencadas, Vitor Joao Gomes Da Silva es_ES
dc.contributor.author Costa, C.M. es_ES
dc.contributor.author Botelho, G. es_ES
dc.contributor.author Caparrós, C. es_ES
dc.contributor.author Ribeiro, C. es_ES
dc.contributor.author Gómez Ribelles, José Luís es_ES
dc.contributor.author Lanceros-Mendez, Senentxu es_ES
dc.date.accessioned 2016-05-17T07:28:01Z
dc.date.available 2016-05-17T07:28:01Z
dc.date.issued 2012
dc.identifier.issn 0022-2348
dc.identifier.uri http://hdl.handle.net/10251/64183
dc.description.abstract [EN] Poly(lactic acid) (PLA) electrospun membranes were obtained by electrospinning and characterized by scanning electron microscopy (SEM) and thermal analysis. The polymer membranes showed a random fiber distribution with a mean diameter of 1µm (±300 nm). Differential scanning calorimetry (DSC) experiments showed that the membranes had a glass transition, cold crystallization, and melting temperatures of 54, 90, and 151◦C, respectively. The kinetic study of thermal degradation of PLA under a nitrogen atmosphere was performed by means of thermogravimetry (TGA). It was found that the thermal decomposition kinetics of PLA could be interpreted in terms of a multi-step degradation mechanism. Several theoretical models were applied to the TGA data. The activation energies obtained by the Broido and Ozawa–Flynn–Wall (OFW) models were in good agreement with the value of the activation energy calculated by the Kissinger method es_ES
dc.description.sponsorship The authors thank the Portuguese Foundation for Science and Technology (FCT) for finantial support under grants NANO/NMed-SD/0156/2007 and PTDC/CTM/73030/2006. V. Sencadas thanks the FCT for the SFRH/BPD/63148/2009 grant. C. Ribeiro thanks the INL for a PhD grant. J. L. Gomez-Ribelles acknowledges the support of the Spanish Ministry of Education through project No. MAT2007-66759-C03-01 (including the FEDER financial support, and funding in the Centro de Investigacion Principe Felipe in the field of Regenerative Medicine through the collaboration agreement between the Conselleria de Sanidad (Generalitat Valenciana), and the Instituto de Salud Carlos III (Ministry of Science and Innovation). en_EN
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Journal of Macromolecular Science Part B Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject activation energy es_ES
dc.subject electrospinning es_ES
dc.subject electrospun fibers es_ES
dc.subject poly(lactic acid) es_ES
dc.subject polymer characterization es_ES
dc.subject TGA es_ES
dc.subject thermal degradation kinetics es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Thermal Properties of Electrospun Poly(Lactic Acid) Membranes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/00222348.2011.597325
dc.relation.projectID info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F63148%2F2009/PT/ELECTROACTIVE MATERIALS BASED POROUS MEMBRANES AND SCAFFOLDS FOR BIOMEDICAL APPLICATIONS/
dc.relation.projectID info:eu-repo/grantAgreement/MEC//MAT2007-66759-C03-01/ES/NUEVOS SUBSTRATOS POLIMERICOS BIORREABSORBIBLES PARA LA REGENERACION DEL CARTILAGO ARTICULAR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/5876-PPCDTI/109368/PT/“Smart joint implants using bionanocomposites-(SIMBIO)”/
dc.relation.projectID info:eu-repo/grantAgreement/FCT/5876-PPCDTI/73030/PT/Polarization-driven self-assembly of organic and biomaterials using ferroelectric polymers/
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular es_ES
dc.description.bibliographicCitation Sencadas, VJGDS.; Costa, C.; Botelho, G.; Caparrós, C.; Ribeiro, C.; Gómez Ribelles, JL.; Lanceros-Mendez, S. (2012). Thermal Properties of Electrospun Poly(Lactic Acid) Membranes. Journal of Macromolecular Science Part B Physics. 51(1-3):411-424. https://doi.org/10.1080/00222348.2011.597325 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1080/00222348.2011.597325 es_ES
dc.description.upvformatpinicio 411 es_ES
dc.description.upvformatpfin 424 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 51 es_ES
dc.description.issue 1-3 es_ES
dc.relation.senia 239468 es_ES
dc.identifier.eissn 1525-609X
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Conselleria de Sanitat Universal i Salut Pública de la Generalitat Valenciana es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder Fundação para a Ciência e a Tecnologia, Portugal
dc.description.references Nijenhuis, A. J., Grijpma, D. W., & Pennings, A. J. (1992). Lewis acid catalyzed polymerization of L-lactide. Kinetics and mechanism of the bulk polymerization. Macromolecules, 25(24), 6419-6424. doi:10.1021/ma00050a006 es_ES
dc.description.references Tsuji, H., Daimon, H., & Fujie, K. (2003). A New Strategy for Recycling and Preparation of Poly(l-lactic acid):  Hydrolysis in the Melt. Biomacromolecules, 4(3), 835-840. doi:10.1021/bm034060j es_ES
dc.description.references Lim, L.-T., Auras, R., & Rubino, M. (2008). Processing technologies for poly(lactic acid). Progress in Polymer Science, 33(8), 820-852. doi:10.1016/j.progpolymsci.2008.05.004 es_ES
dc.description.references Doshi, J., & Reneker, D. H. (1995). Electrospinning process and applications of electrospun fibers. Journal of Electrostatics, 35(2-3), 151-160. doi:10.1016/0304-3886(95)00041-8 es_ES
dc.description.references Ramakrishna, S., Fujihara, K., Teo, W.-E., Lim, T.-C., & Ma, Z. (2005). An Introduction to Electrospinning and Nanofibers. doi:10.1142/9789812567611 es_ES
dc.description.references Sabir, M. I., Xu, X., & Li, L. (2009). A review on biodegradable polymeric materials for bone tissue engineering applications. Journal of Materials Science, 44(21), 5713-5724. doi:10.1007/s10853-009-3770-7 es_ES
dc.description.references Yang, F., Murugan, R., Ramakrishna, S., Wang, X., Ma, Y.-X., & Wang, S. (2004). Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials, 25(10), 1891-1900. doi:10.1016/j.biomaterials.2003.08.062 es_ES
dc.description.references Li, W.-J., Tuli, R., Okafor, C., Derfoul, A., Danielson, K. G., Hall, D. J., & Tuan, R. S. (2005). A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials, 26(6), 599-609. doi:10.1016/j.biomaterials.2004.03.005 es_ES
dc.description.references Shin, M., Yoshimoto, H., & Vacanti, J. P. (2004). In Vivo Bone Tissue Engineering Using Mesenchymal Stem Cells on a Novel Electrospun Nanofibrous Scaffold. Tissue Engineering, 10(1-2), 33-41. doi:10.1089/107632704322791673 es_ES
dc.description.references Shin, M., Ishii, O., Sueda, T., & Vacanti, J. P. (2004). Contractile cardiac grafts using a novel nanofibrous mesh. Biomaterials, 25(17), 3717-3723. doi:10.1016/j.biomaterials.2003.10.055 es_ES
dc.description.references Zhang, Y., Lim, C. T., Ramakrishna, S., & Huang, Z.-M. (2005). Recent development of polymer nanofibers for biomedical and biotechnological applications. Journal of Materials Science: Materials in Medicine, 16(10), 933-946. doi:10.1007/s10856-005-4428-x es_ES
dc.description.references Kopinke, F.-D., Remmler, M., Mackenzie, K., Möder, M., & Wachsen, O. (1996). Thermal decomposition of biodegradable polyesters—II. Poly(lactic acid). Polymer Degradation and Stability, 53(3), 329-342. doi:10.1016/0141-3910(96)00102-4 es_ES
dc.description.references Kopinke, F.-D., & Mackenzie, K. (1997). Mechanistic aspects of the thermal degradation of poly(lactic acid) and poly(β-hydroxybutyric acid). Journal of Analytical and Applied Pyrolysis, 40-41, 43-53. doi:10.1016/s0165-2370(97)00022-3 es_ES
dc.description.references Cam, D., & Marucci, M. (1997). Influence of residual monomers and metals on poly (l-lactide) thermal stability. Polymer, 38(8), 1879-1884. doi:10.1016/s0032-3861(96)00711-2 es_ES
dc.description.references McNeill, I. C., & Leiper, H. A. (1985). Degradation studies of some polyesters and polycarbonates—1. Polylactide: General features of the degradation under programmed heating conditions. Polymer Degradation and Stability, 11(3), 267-285. doi:10.1016/0141-3910(85)90050-3 es_ES
dc.description.references Babanalbandi, A., Hill, D. J. T., Hunter, D. S., & Kettle, L. (1999). Thermal stability of poly(lactic acid) before and after γ-radiolysis. Polymer International, 48(10), 980-984. doi:10.1002/(sici)1097-0126(199910)48:10<980::aid-pi257>3.0.co;2-b es_ES
dc.description.references Aoyagi, Y., Yamashita, K., & Doi, Y. (2002). Thermal degradation of poly[(R)-3-hydroxybutyrate], poly[ε-caprolactone], and poly[(S)-lactide]. Polymer Degradation and Stability, 76(1), 53-59. doi:10.1016/s0141-3910(01)00265-8 es_ES
dc.description.references Zou, H., Yi, C., Wang, L., Liu, H., & Xu, W. (2009). Thermal degradation of poly(lactic acid) measured by thermogravimetry coupled to Fourier transform infrared spectroscopy. Journal of Thermal Analysis and Calorimetry, 97(3), 929-935. doi:10.1007/s10973-009-0121-5 es_ES
dc.description.references Turi, E. 1997. “Thermal characterization of polymeric materials”. New York: Academic Press. es_ES
dc.description.references Sencadas, V., Lanceros-Méndez, S., & Mano, J. . (2004). Effect of the mechanical stretching on the ferroelectric properties of a (VDF/TrFE) (75/25) copolymer film. Solid State Communications, 129(1), 5-8. doi:10.1016/j.ssc.2003.07.010 es_ES
dc.description.references Flynn, J. H., & Wall, L. A. (1966). A quick, direct method for the determination of activation energy from thermogravimetric data. Journal of Polymer Science Part B: Polymer Letters, 4(5), 323-328. doi:10.1002/pol.1966.110040504 es_ES
dc.description.references Ozawa, T. (1965). A New Method of Analyzing Thermogravimetric Data. Bulletin of the Chemical Society of Japan, 38(11), 1881-1886. doi:10.1246/bcsj.38.1881 es_ES
dc.description.references Chrissafis, K., Paraskevopoulos, K. M., & Bikiaris, D. N. (2005). Thermal degradation mechanism of poly(ethylene succinate) and poly(butylene succinate): Comparative study. Thermochimica Acta, 435(2), 142-150. doi:10.1016/j.tca.2005.05.011 es_ES
dc.description.references Chrissafis, K., Paraskevopoulos, K. M., & Bikiaris, D. N. (2006). Thermal degradation kinetics of the biodegradable aliphatic polyester, poly(propylene succinate). Polymer Degradation and Stability, 91(1), 60-68. doi:10.1016/j.polymdegradstab.2005.04.028 es_ES
dc.description.references Hamciuc, C., Vlad-Bubulac, T., Petreus, O., & Lisa, G. (2007). Kinetics of thermal degradation in non-isothermal conditions of some phosphorus-containing polyesters and polyesterimides. European Polymer Journal, 43(3), 980-988. doi:10.1016/j.eurpolymj.2006.12.018 es_ES
dc.description.references Kissinger, H. E. (1956). Variation of peak temperature with heating rate in differential thermal analysis. Journal of Research of the National Bureau of Standards, 57(4), 217. doi:10.6028/jres.057.026 es_ES
dc.description.references Kissinger, H. E. (1957). Reaction Kinetics in Differential Thermal Analysis. Analytical Chemistry, 29(11), 1702-1706. doi:10.1021/ac60131a045 es_ES
dc.description.references Zhou, H., Green, T. B., & Joo, Y. L. (2006). The thermal effects on electrospinning of polylactic acid melts. Polymer, 47(21), 7497-7505. doi:10.1016/j.polymer.2006.08.042 es_ES
dc.description.references Zeng, J., Chen, X., Liang, Q., Xu, X., & Jing, X. (2004). Enzymatic Degradation of Poly(L-lactide) and Poly(?-caprolactone) Electrospun Fibers. Macromolecular Bioscience, 4(12), 1118-1125. doi:10.1002/mabi.200400092 es_ES
dc.description.references Inai, R., Kotaki, M., & Ramakrishna, S. (2005). Deformation behavior of electrospun poly(L-lactide-co-ɛ-caprolactone) nonwoven membranes under uniaxial tensile loading. Journal of Polymer Science Part B: Polymer Physics, 43(22), 3205-3212. doi:10.1002/polb.20457 es_ES
dc.description.references Migliaresi, C., Cohn, D., De Lollis, A., & Fambri, L. (1991). Dynamic mechanical and calorimetric analysis of compression-molded PLLA of different molecular weights: Effect of thermal treatments. Journal of Applied Polymer Science, 43(1), 83-95. doi:10.1002/app.1991.070430109 es_ES
dc.description.references Hernández Sánchez, F., Molina Mateo, J., Romero Colomer, F. J., Salmerón Sánchez, M., Gómez Ribelles, J. L., & Mano, J. F. (2005). Influence of Low-Temperature Nucleation on the Crystallization Process of Poly(l-lactide). Biomacromolecules, 6(6), 3283-3290. doi:10.1021/bm050323t es_ES
dc.description.references Salmerón Sánchez, M., Mathot, V. B. F., Vanden Poel, G., & Gómez Ribelles, J. L. (2007). Effect of the Cooling Rate on the Nucleation Kinetics of Poly(l-Lactic Acid) and Its Influence on Morphology. Macromolecules, 40(22), 7989-7997. doi:10.1021/ma0712706 es_ES
dc.description.references Hatakeyama, T. and Quinn, F. X. 1994. “Thermal analysis, fundamentals and applications to polymer science”. Chichester: John Wiley & Sons. es_ES
dc.description.references Jang, B. N., & Wilkie, C. A. (2005). The thermal degradation of bisphenol A polycarbonate in air. Thermochimica Acta, 426(1-2), 73-84. doi:10.1016/j.tca.2004.07.023 es_ES
dc.description.references Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. 1999. “Numerical recipes in fortran 77: the art of scientific computing”. Cambridge: Cambridge University Press. es_ES
dc.description.references Vyazovkin, S., & Sbirrazzuoli, N. (2006). Isoconversional Kinetic Analysis of Thermally Stimulated Processes in Polymers. Macromolecular Rapid Communications, 27(18), 1515-1532. doi:10.1002/marc.200600404 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem