- -

Polycaprolactone membranes reinforced by toughened sol-gel produced silica networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Polycaprolactone membranes reinforced by toughened sol-gel produced silica networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Trujillo, Sara es_ES
dc.contributor.author Plazas Bonilla, Clara Eugenia es_ES
dc.contributor.author Santos, Marta Sofía es_ES
dc.contributor.author Matos, Joana M. es_ES
dc.contributor.author Gamboa Martínez, Tatiana Carolina es_ES
dc.contributor.author Perilla, Jairo Ernesto es_ES
dc.contributor.author Mano, Joao F. es_ES
dc.contributor.author Gómez Ribelles, José Luís es_ES
dc.date.accessioned 2016-05-17T07:40:28Z
dc.date.available 2016-05-17T07:40:28Z
dc.date.issued 2014-07
dc.identifier.issn 0928-0707
dc.identifier.uri http://hdl.handle.net/10251/64192
dc.description.abstract The aim of this work is to develop polycaprolactone based porous materials with improved mechanical performance to be used in bone repair. The hybrid membranes consist in a polymeric porous material in which the pore walls are coated by a silica thin layer. Silica coating increases membrane stiffness with respect to pure polymer but in addition filling the pores of the polymer with a silica phase improves bioactivity due to the delivery of silica ions in the neighborhood of the material in vivo. Nevertheless silica network, even that produced by sol-gel, might be too stiff and brittle what is not desirable for its performance as a coating. In this work we produced a toughened silica coating adding chitosan and 3-glycidoxypropyltrimethoxysilane (GPTMS) to the precursor solution looking for having polymer chains linked by covalent bonding to the silica network. Hybrid polymer-silica coating was produced by in situ sol-gel reaction using Tetraethyl orthosilicate (TEOS), GPTMS and chitosan. Chemical reaction between amine groups of chitosan chains and epoxy groups of GPTMS allowed covalent bonding of polymer chains to the silica network. Physical properties of the hybrid membranes were characterized and cell attachment of MC3T3-E1 pre-osteoblastic cells on the surface of these supports was assessed. es_ES
dc.description.sponsorship CEPB acknowledges the economic support of COOPEN agreement in the progress of the present work. JFM acknowledges the support from Fundacao para a Ciencia e Tecnologia through project PTDC/FIS/115048/2009. JLGR acknowledges the support of the Spanish Ministry of Education through project No. MAT2010-21611-C03-01. CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. Authors want to thank the technical support of the Universitat Politecnica de Valencia's Microscopy Service. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag es_ES
dc.relation.ispartof Journal of Sol-Gel Science and Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Polycaprolactone es_ES
dc.subject Chitosan es_ES
dc.subject Sol-gel es_ES
dc.subject Silica coating es_ES
dc.subject Biodegradable biomaterials es_ES
dc.subject Bone tissue engineering es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Polycaprolactone membranes reinforced by toughened sol-gel produced silica networks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10971-014-3342-4
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2010-21611-C03-01/ES/MATERIALES BIOESTABLES Y BIOREABSORBIBLES A LARGO PLAZO COMO SOPORTES MACROPOROSOS PARA LA REGENERACION DEL CARTILAGO ARTICULAR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/5876-PPCDTI/115048/PT/SupraRelax: Molecular mobility of biodegradable polymer in ultra-confined supramolecular organized geometries/
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Trujillo, S.; Plazas Bonilla, CE.; Santos, MS.; Matos, JM.; Gamboa Martínez, TC.; Perilla, JE.; Mano, JF.... (2014). Polycaprolactone membranes reinforced by toughened sol-gel produced silica networks. Journal of Sol-Gel Science and Technology. 71(1):136-146. https://doi.org/10.1007/s10971-014-3342-4 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s10971-014-3342-4 es_ES
dc.description.upvformatpinicio 136 es_ES
dc.description.upvformatpfin 146 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 71 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 284986 es_ES
dc.identifier.eissn 1573-4846
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder Fundação para a Ciência e a Tecnologia, Portugal
dc.description.references Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543 es_ES
dc.description.references Silvestre JS, Levy BI, Tedgui A (2008) Mechanisms of angiogenesis and remodelling of the microvasculature. Cardiovasc Res 78(2):201–202 es_ES
dc.description.references Klenke FM et al (2008) Impact of pore size on the vascularization and osseointegration of ceramic bone substitutes in vivo. J Biomed Mater Res A 85(3):777–786 es_ES
dc.description.references Liu C, Xia Z, Czernuszka JT (2007) Design and development of three-dimensional scaffolds for tissue engineering. Chem Eng Res Des 85(7):1051–1064 es_ES
dc.description.references Sampson SL et al (2014) Cell electrospinning: an in vitro and in vivo study. Small 10(1):78–82 es_ES
dc.description.references Townsend-Nicholson A, Jayasinghe SN (2006) Cell electrospinning: a unique biotechnique for encapsulating living organisms for generating active biological microthreads/scaffolds. Biomacromolecules 7(12):3364–3369 es_ES
dc.description.references El-Gendy R et al (2012) Osteogenic differentiation of human dental pulp stromal cells on 45S5 Bioglass(R) based scaffolds in vitro and in vivo. Tissue Eng Part A 19(5–6):707–715 es_ES
dc.description.references Gerhardt LC et al (2012) Neocellularization and neovascularization of nanosized bioactive glass-coated decellularized trabecular bone scaffolds. J Biomed Mater Res, Part A 101A(3):827–841 es_ES
dc.description.references Marelli B et al (2011) Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function. Biomaterials 32(34):8915–8926 es_ES
dc.description.references Tamjid E et al (2011) Effect of particle size on the in vitro bioactivity, hydrophilicity and mechanical properties of bioactive glass-reinforced polycaprolactone composites. Mater Sci Eng, C 31(7):1526–1533 es_ES
dc.description.references Kim I-K et al (2013) Comparison of osteogenesis in poly(L-lactic acid)-coated and non-coated porous hydroxyapatite scaffolds. J Porous Mater 20(5):1031–1039 es_ES
dc.description.references Bang LT et al (2013) The use of poly (ε-caprolactone) to enhance the mechanical strength of porous Si-substituted carbonate apatite. J Appl Polym Sci 130(1):426–433 es_ES
dc.description.references Alves NM et al (2010) Designing biomaterials based on biomineralization of bone. J Mater Chem 20(15):2911–2921 es_ES
dc.description.references Sadat-Shojai M et al (2013) Nano-hydroxyapatite reinforced polyhydroxybutyrate composites: a comprehensive study on the structural and in vitro biological properties. Mater Sci Eng, C 33(5):2776–2787 es_ES
dc.description.references Shirosaki Y et al (2011) Effects of Si(IV) released from chitosan–silicate hybrids on proliferation and differentiation of NG63 osteoblast cells. Bioceram Dev Appl 1:1–4 es_ES
dc.description.references Mano JOF, Hungerford G, Gómez Ribelles JL (2008) Bioactive poly(L-lactic acid)-chitosan hybrid scaffolds. Mater Sci Eng, C 28(8):1356–1365 es_ES
dc.description.references Lebourg M, Anton JS, Ribelles JLG (2010) Hybrid structure in PCL-HAp scaffold resulting from biomimetic apatite growth. J Mater Sci Mater Med 21(1):33–44 es_ES
dc.description.references Demirdögen B et al (2013) Silica coating of the pore walls of a microporous polycaprolactone membrane to be used in bone tissue engineering. J Biomed Mater Res A. doi: 10.1002/jbma.34999 es_ES
dc.description.references Dinelli M, Fabbri E, Bondioli F (2011) TiO2-SiO2 hard coating on polycarbonate substrate by microwave assisted sol–gel technique. J Sol-Gel Sci Technol 58(2):463–469 es_ES
dc.description.references Wei YC et al (1992) The crosslinking of chitosan fibers. J Polym Sci, Part A: Polym Chem 30(10):2187–2193 es_ES
dc.description.references Kildeeva NR et al (2009) About mechanism of chitosan cross-linking with glutaraldehyde. Russ J Bioorg Chem 35(3):360–369 es_ES
dc.description.references Schiffman JD, Schauer CL (2006) Cross-linking chitosan nanofibers. Biomacromolecules 8(2):594–601 es_ES
dc.description.references Mahony O et al (2010) Silica-Gelatin hybrids with tailorable degradation and mechanical properties for tissue regeneration. Adv Funct Mater 20:3835–3845 es_ES
dc.description.references Shirosaki Y et al (2010) Preparation of osteocompatible Si(IV)-enriched chitosan–silicate hybrids. J Ceram Soc Jpn 118(11):989–992 es_ES
dc.description.references Shirosaki Y et al (2009) Physical, chemical and in vitro biological profile of chitosan hybrid membrane as a function of organosiloxane concentration. Acta Biomater 5(1):346–355 es_ES
dc.description.references Ho M-H et al (2004) Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials 25(1):129–138 es_ES
dc.description.references Suzuki T et al (1999) Further biocompatibility testing of silica–chitosan complex membrane in the production of tissue plasminogen activator by epithelial and fibroblast cells. J Biosci Bioeng 88(2):194–199 es_ES
dc.description.references Hayes WC et al (1972) A mathematical analysis for indentation tests of articular cartilage. J Biomech 5(5):541–551 es_ES
dc.description.references Cheng L et al (2000) Flat-punch indentation of viscoelastic material. J Polym Sci, Part B: Polym Phys 38(1):10–22 es_ES
dc.description.references Ebenstein DM, Pruitt LA (2006) Nanoindentation of biological materials. Nano Today 1(3):26–33 es_ES
dc.description.references Deplaine H et al (2013) Biomimetic hydroxyapatite coating on pore walls improves osteointegration of poly(L-lactic acid) scaffolds. J Biomed Mater Res Part B Appl Biomater 101B(1):173–186 es_ES
dc.description.references Lebourg M et al (2013) Different hyaluronic acid morphology modulates primary articular chondrocyte behavior in hyaluronic acid-coated polycaprolactone scaffolds. J Biomed Mater Res, Part A 101A(2):518–527 es_ES
dc.description.references Ma ZW et al (2003) Paraffin spheres as porogen to fabricate poly(L-lactic acid) scaffolds with improved cytocompatibility for cartilage tissue engineering. J Biomed Mater Res Part B Appl Biomater 67B(1):610–617 es_ES
dc.description.references Santamaria VA et al (2012) Influence of the macro and micro-porous structure on the mechanical behavior of poly(L-lactic acid) scaffolds. J Non-Cryst Solids 358(23):3141–3149 es_ES
dc.description.references Kyritsis A et al (1995) Polymer-water interactions in poly(hydroxyethyl acrylate) hydrogels studied by dielectric, calorimetric and sorption isotherm measurements. Polym Gels Netw 3(4):445–469 es_ES
dc.description.references Pandis C et al (2011) Water sorption characteristics of poly(2-hydroxyethyl acrylate)/silica nanocomposite hydrogels. J Polym Sci, Part B: Polym Phys 49(9):657–668 es_ES
dc.description.references Neto CGT et al (2005) Thermal analysis of chitosan based networks. Carbohydr Polym 62(2):97–103 es_ES
dc.description.references Pawlak A, Mucha M (2003) Thermogravimetric and FTIR studies of chitosan blends. Thermochim Acta 396(12):153–166 es_ES
dc.description.references Wanjun T, Cunxin W, Donghua C (2005) Kinetic studies on the pyrolysis of chitin and chitosan. Polym Degrad Stab 87(3):389–394 es_ES
dc.description.references Liu Y-L, Su Y-H, Lai J-Y (2004) In situ crosslinking of chitosan and formation of chitosan–silica hybrid membranes with using 3-glycidoxypropyltrimethoxysilane as a crosslinking agent. Polymer 45(20):6831–6837 es_ES
dc.description.references Lebourg M, Antón JS, Ribelles JLG (2008) Porous membranes of PLLA-PCL blend for tissue engineering applications. Eur Polym J 44(7):2207–2218 es_ES
dc.description.references Oh SH et al (2007) In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials 28(9):1664–1671 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem