Mostrar el registro sencillo del ítem
dc.contributor.author | Trujillo, Sara | es_ES |
dc.contributor.author | Plazas Bonilla, Clara Eugenia | es_ES |
dc.contributor.author | Santos, Marta Sofía | es_ES |
dc.contributor.author | Matos, Joana M. | es_ES |
dc.contributor.author | Gamboa Martínez, Tatiana Carolina | es_ES |
dc.contributor.author | Perilla, Jairo Ernesto | es_ES |
dc.contributor.author | Mano, Joao F. | es_ES |
dc.contributor.author | Gómez Ribelles, José Luís | es_ES |
dc.date.accessioned | 2016-05-17T07:40:28Z | |
dc.date.available | 2016-05-17T07:40:28Z | |
dc.date.issued | 2014-07 | |
dc.identifier.issn | 0928-0707 | |
dc.identifier.uri | http://hdl.handle.net/10251/64192 | |
dc.description.abstract | The aim of this work is to develop polycaprolactone based porous materials with improved mechanical performance to be used in bone repair. The hybrid membranes consist in a polymeric porous material in which the pore walls are coated by a silica thin layer. Silica coating increases membrane stiffness with respect to pure polymer but in addition filling the pores of the polymer with a silica phase improves bioactivity due to the delivery of silica ions in the neighborhood of the material in vivo. Nevertheless silica network, even that produced by sol-gel, might be too stiff and brittle what is not desirable for its performance as a coating. In this work we produced a toughened silica coating adding chitosan and 3-glycidoxypropyltrimethoxysilane (GPTMS) to the precursor solution looking for having polymer chains linked by covalent bonding to the silica network. Hybrid polymer-silica coating was produced by in situ sol-gel reaction using Tetraethyl orthosilicate (TEOS), GPTMS and chitosan. Chemical reaction between amine groups of chitosan chains and epoxy groups of GPTMS allowed covalent bonding of polymer chains to the silica network. Physical properties of the hybrid membranes were characterized and cell attachment of MC3T3-E1 pre-osteoblastic cells on the surface of these supports was assessed. | es_ES |
dc.description.sponsorship | CEPB acknowledges the economic support of COOPEN agreement in the progress of the present work. JFM acknowledges the support from Fundacao para a Ciencia e Tecnologia through project PTDC/FIS/115048/2009. JLGR acknowledges the support of the Spanish Ministry of Education through project No. MAT2010-21611-C03-01. CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. Authors want to thank the technical support of the Universitat Politecnica de Valencia's Microscopy Service. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag | es_ES |
dc.relation.ispartof | Journal of Sol-Gel Science and Technology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Polycaprolactone | es_ES |
dc.subject | Chitosan | es_ES |
dc.subject | Sol-gel | es_ES |
dc.subject | Silica coating | es_ES |
dc.subject | Biodegradable biomaterials | es_ES |
dc.subject | Bone tissue engineering | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Polycaprolactone membranes reinforced by toughened sol-gel produced silica networks | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s10971-014-3342-4 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MAT2010-21611-C03-01/ES/MATERIALES BIOESTABLES Y BIOREABSORBIBLES A LARGO PLAZO COMO SOPORTES MACROPOROSOS PARA LA REGENERACION DEL CARTILAGO ARTICULAR/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FCT/5876-PPCDTI/115048/PT/SupraRelax: Molecular mobility of biodegradable polymer in ultra-confined supramolecular organized geometries/ | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.description.bibliographicCitation | Trujillo, S.; Plazas Bonilla, CE.; Santos, MS.; Matos, JM.; Gamboa Martínez, TC.; Perilla, JE.; Mano, JF.... (2014). Polycaprolactone membranes reinforced by toughened sol-gel produced silica networks. Journal of Sol-Gel Science and Technology. 71(1):136-146. https://doi.org/10.1007/s10971-014-3342-4 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s10971-014-3342-4 | es_ES |
dc.description.upvformatpinicio | 136 | es_ES |
dc.description.upvformatpfin | 146 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 71 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 284986 | es_ES |
dc.identifier.eissn | 1573-4846 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Instituto de Salud Carlos III | es_ES |
dc.contributor.funder | Fundação para a Ciência e a Tecnologia, Portugal | |
dc.description.references | Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543 | es_ES |
dc.description.references | Silvestre JS, Levy BI, Tedgui A (2008) Mechanisms of angiogenesis and remodelling of the microvasculature. Cardiovasc Res 78(2):201–202 | es_ES |
dc.description.references | Klenke FM et al (2008) Impact of pore size on the vascularization and osseointegration of ceramic bone substitutes in vivo. J Biomed Mater Res A 85(3):777–786 | es_ES |
dc.description.references | Liu C, Xia Z, Czernuszka JT (2007) Design and development of three-dimensional scaffolds for tissue engineering. Chem Eng Res Des 85(7):1051–1064 | es_ES |
dc.description.references | Sampson SL et al (2014) Cell electrospinning: an in vitro and in vivo study. Small 10(1):78–82 | es_ES |
dc.description.references | Townsend-Nicholson A, Jayasinghe SN (2006) Cell electrospinning: a unique biotechnique for encapsulating living organisms for generating active biological microthreads/scaffolds. Biomacromolecules 7(12):3364–3369 | es_ES |
dc.description.references | El-Gendy R et al (2012) Osteogenic differentiation of human dental pulp stromal cells on 45S5 Bioglass(R) based scaffolds in vitro and in vivo. Tissue Eng Part A 19(5–6):707–715 | es_ES |
dc.description.references | Gerhardt LC et al (2012) Neocellularization and neovascularization of nanosized bioactive glass-coated decellularized trabecular bone scaffolds. J Biomed Mater Res, Part A 101A(3):827–841 | es_ES |
dc.description.references | Marelli B et al (2011) Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function. Biomaterials 32(34):8915–8926 | es_ES |
dc.description.references | Tamjid E et al (2011) Effect of particle size on the in vitro bioactivity, hydrophilicity and mechanical properties of bioactive glass-reinforced polycaprolactone composites. Mater Sci Eng, C 31(7):1526–1533 | es_ES |
dc.description.references | Kim I-K et al (2013) Comparison of osteogenesis in poly(L-lactic acid)-coated and non-coated porous hydroxyapatite scaffolds. J Porous Mater 20(5):1031–1039 | es_ES |
dc.description.references | Bang LT et al (2013) The use of poly (ε-caprolactone) to enhance the mechanical strength of porous Si-substituted carbonate apatite. J Appl Polym Sci 130(1):426–433 | es_ES |
dc.description.references | Alves NM et al (2010) Designing biomaterials based on biomineralization of bone. J Mater Chem 20(15):2911–2921 | es_ES |
dc.description.references | Sadat-Shojai M et al (2013) Nano-hydroxyapatite reinforced polyhydroxybutyrate composites: a comprehensive study on the structural and in vitro biological properties. Mater Sci Eng, C 33(5):2776–2787 | es_ES |
dc.description.references | Shirosaki Y et al (2011) Effects of Si(IV) released from chitosan–silicate hybrids on proliferation and differentiation of NG63 osteoblast cells. Bioceram Dev Appl 1:1–4 | es_ES |
dc.description.references | Mano JOF, Hungerford G, Gómez Ribelles JL (2008) Bioactive poly(L-lactic acid)-chitosan hybrid scaffolds. Mater Sci Eng, C 28(8):1356–1365 | es_ES |
dc.description.references | Lebourg M, Anton JS, Ribelles JLG (2010) Hybrid structure in PCL-HAp scaffold resulting from biomimetic apatite growth. J Mater Sci Mater Med 21(1):33–44 | es_ES |
dc.description.references | Demirdögen B et al (2013) Silica coating of the pore walls of a microporous polycaprolactone membrane to be used in bone tissue engineering. J Biomed Mater Res A. doi: 10.1002/jbma.34999 | es_ES |
dc.description.references | Dinelli M, Fabbri E, Bondioli F (2011) TiO2-SiO2 hard coating on polycarbonate substrate by microwave assisted sol–gel technique. J Sol-Gel Sci Technol 58(2):463–469 | es_ES |
dc.description.references | Wei YC et al (1992) The crosslinking of chitosan fibers. J Polym Sci, Part A: Polym Chem 30(10):2187–2193 | es_ES |
dc.description.references | Kildeeva NR et al (2009) About mechanism of chitosan cross-linking with glutaraldehyde. Russ J Bioorg Chem 35(3):360–369 | es_ES |
dc.description.references | Schiffman JD, Schauer CL (2006) Cross-linking chitosan nanofibers. Biomacromolecules 8(2):594–601 | es_ES |
dc.description.references | Mahony O et al (2010) Silica-Gelatin hybrids with tailorable degradation and mechanical properties for tissue regeneration. Adv Funct Mater 20:3835–3845 | es_ES |
dc.description.references | Shirosaki Y et al (2010) Preparation of osteocompatible Si(IV)-enriched chitosan–silicate hybrids. J Ceram Soc Jpn 118(11):989–992 | es_ES |
dc.description.references | Shirosaki Y et al (2009) Physical, chemical and in vitro biological profile of chitosan hybrid membrane as a function of organosiloxane concentration. Acta Biomater 5(1):346–355 | es_ES |
dc.description.references | Ho M-H et al (2004) Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials 25(1):129–138 | es_ES |
dc.description.references | Suzuki T et al (1999) Further biocompatibility testing of silica–chitosan complex membrane in the production of tissue plasminogen activator by epithelial and fibroblast cells. J Biosci Bioeng 88(2):194–199 | es_ES |
dc.description.references | Hayes WC et al (1972) A mathematical analysis for indentation tests of articular cartilage. J Biomech 5(5):541–551 | es_ES |
dc.description.references | Cheng L et al (2000) Flat-punch indentation of viscoelastic material. J Polym Sci, Part B: Polym Phys 38(1):10–22 | es_ES |
dc.description.references | Ebenstein DM, Pruitt LA (2006) Nanoindentation of biological materials. Nano Today 1(3):26–33 | es_ES |
dc.description.references | Deplaine H et al (2013) Biomimetic hydroxyapatite coating on pore walls improves osteointegration of poly(L-lactic acid) scaffolds. J Biomed Mater Res Part B Appl Biomater 101B(1):173–186 | es_ES |
dc.description.references | Lebourg M et al (2013) Different hyaluronic acid morphology modulates primary articular chondrocyte behavior in hyaluronic acid-coated polycaprolactone scaffolds. J Biomed Mater Res, Part A 101A(2):518–527 | es_ES |
dc.description.references | Ma ZW et al (2003) Paraffin spheres as porogen to fabricate poly(L-lactic acid) scaffolds with improved cytocompatibility for cartilage tissue engineering. J Biomed Mater Res Part B Appl Biomater 67B(1):610–617 | es_ES |
dc.description.references | Santamaria VA et al (2012) Influence of the macro and micro-porous structure on the mechanical behavior of poly(L-lactic acid) scaffolds. J Non-Cryst Solids 358(23):3141–3149 | es_ES |
dc.description.references | Kyritsis A et al (1995) Polymer-water interactions in poly(hydroxyethyl acrylate) hydrogels studied by dielectric, calorimetric and sorption isotherm measurements. Polym Gels Netw 3(4):445–469 | es_ES |
dc.description.references | Pandis C et al (2011) Water sorption characteristics of poly(2-hydroxyethyl acrylate)/silica nanocomposite hydrogels. J Polym Sci, Part B: Polym Phys 49(9):657–668 | es_ES |
dc.description.references | Neto CGT et al (2005) Thermal analysis of chitosan based networks. Carbohydr Polym 62(2):97–103 | es_ES |
dc.description.references | Pawlak A, Mucha M (2003) Thermogravimetric and FTIR studies of chitosan blends. Thermochim Acta 396(12):153–166 | es_ES |
dc.description.references | Wanjun T, Cunxin W, Donghua C (2005) Kinetic studies on the pyrolysis of chitin and chitosan. Polym Degrad Stab 87(3):389–394 | es_ES |
dc.description.references | Liu Y-L, Su Y-H, Lai J-Y (2004) In situ crosslinking of chitosan and formation of chitosan–silica hybrid membranes with using 3-glycidoxypropyltrimethoxysilane as a crosslinking agent. Polymer 45(20):6831–6837 | es_ES |
dc.description.references | Lebourg M, Antón JS, Ribelles JLG (2008) Porous membranes of PLLA-PCL blend for tissue engineering applications. Eur Polym J 44(7):2207–2218 | es_ES |
dc.description.references | Oh SH et al (2007) In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials 28(9):1664–1671 | es_ES |