- -

Polycaprolactone membranes reinforced by toughened sol-gel produced silica networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Polycaprolactone membranes reinforced by toughened sol-gel produced silica networks

Mostrar el registro completo del ítem

Trujillo, S.; Plazas Bonilla, CE.; Santos, MS.; Matos, JM.; Gamboa Martínez, TC.; Perilla, JE.; Mano, JF.... (2014). Polycaprolactone membranes reinforced by toughened sol-gel produced silica networks. Journal of Sol-Gel Science and Technology. 71(1):136-146. https://doi.org/10.1007/s10971-014-3342-4

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/64192

Ficheros en el ítem

Metadatos del ítem

Título: Polycaprolactone membranes reinforced by toughened sol-gel produced silica networks
Autor: Trujillo, Sara Plazas Bonilla, Clara Eugenia Santos, Marta Sofía Matos, Joana M. Gamboa Martínez, Tatiana Carolina Perilla, Jairo Ernesto Mano, Joao F. Gómez Ribelles, José Luís
Entidad UPV: Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular
Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Fecha difusión:
Resumen:
The aim of this work is to develop polycaprolactone based porous materials with improved mechanical performance to be used in bone repair. The hybrid membranes consist in a polymeric porous material in which the pore walls ...[+]
Palabras clave: Polycaprolactone , Chitosan , Sol-gel , Silica coating , Biodegradable biomaterials , Bone tissue engineering
Derechos de uso: Cerrado
Fuente:
Journal of Sol-Gel Science and Technology. (issn: 0928-0707 ) (eissn: 1573-4846 )
DOI: 10.1007/s10971-014-3342-4
Editorial:
Springer Verlag
Versión del editor: http://dx.doi.org/10.1007/s10971-014-3342-4
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//MAT2010-21611-C03-01/ES/MATERIALES BIOESTABLES Y BIOREABSORBIBLES A LARGO PLAZO COMO SOPORTES MACROPOROSOS PARA LA REGENERACION DEL CARTILAGO ARTICULAR/
info:eu-repo/grantAgreement/FCT/5876-PPCDTI/115048/PT/SupraRelax: Molecular mobility of biodegradable polymer in ultra-confined supramolecular organized geometries/
Agradecimientos:
CEPB acknowledges the economic support of COOPEN agreement in the progress of the present work. JFM acknowledges the support from Fundacao para a Ciencia e Tecnologia through project PTDC/FIS/115048/2009. JLGR acknowledges ...[+]
Tipo: Artículo

References

Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543

Silvestre JS, Levy BI, Tedgui A (2008) Mechanisms of angiogenesis and remodelling of the microvasculature. Cardiovasc Res 78(2):201–202

Klenke FM et al (2008) Impact of pore size on the vascularization and osseointegration of ceramic bone substitutes in vivo. J Biomed Mater Res A 85(3):777–786 [+]
Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543

Silvestre JS, Levy BI, Tedgui A (2008) Mechanisms of angiogenesis and remodelling of the microvasculature. Cardiovasc Res 78(2):201–202

Klenke FM et al (2008) Impact of pore size on the vascularization and osseointegration of ceramic bone substitutes in vivo. J Biomed Mater Res A 85(3):777–786

Liu C, Xia Z, Czernuszka JT (2007) Design and development of three-dimensional scaffolds for tissue engineering. Chem Eng Res Des 85(7):1051–1064

Sampson SL et al (2014) Cell electrospinning: an in vitro and in vivo study. Small 10(1):78–82

Townsend-Nicholson A, Jayasinghe SN (2006) Cell electrospinning: a unique biotechnique for encapsulating living organisms for generating active biological microthreads/scaffolds. Biomacromolecules 7(12):3364–3369

El-Gendy R et al (2012) Osteogenic differentiation of human dental pulp stromal cells on 45S5 Bioglass(R) based scaffolds in vitro and in vivo. Tissue Eng Part A 19(5–6):707–715

Gerhardt LC et al (2012) Neocellularization and neovascularization of nanosized bioactive glass-coated decellularized trabecular bone scaffolds. J Biomed Mater Res, Part A 101A(3):827–841

Marelli B et al (2011) Accelerated mineralization of dense collagen-nano bioactive glass hybrid gels increases scaffold stiffness and regulates osteoblastic function. Biomaterials 32(34):8915–8926

Tamjid E et al (2011) Effect of particle size on the in vitro bioactivity, hydrophilicity and mechanical properties of bioactive glass-reinforced polycaprolactone composites. Mater Sci Eng, C 31(7):1526–1533

Kim I-K et al (2013) Comparison of osteogenesis in poly(L-lactic acid)-coated and non-coated porous hydroxyapatite scaffolds. J Porous Mater 20(5):1031–1039

Bang LT et al (2013) The use of poly (ε-caprolactone) to enhance the mechanical strength of porous Si-substituted carbonate apatite. J Appl Polym Sci 130(1):426–433

Alves NM et al (2010) Designing biomaterials based on biomineralization of bone. J Mater Chem 20(15):2911–2921

Sadat-Shojai M et al (2013) Nano-hydroxyapatite reinforced polyhydroxybutyrate composites: a comprehensive study on the structural and in vitro biological properties. Mater Sci Eng, C 33(5):2776–2787

Shirosaki Y et al (2011) Effects of Si(IV) released from chitosan–silicate hybrids on proliferation and differentiation of NG63 osteoblast cells. Bioceram Dev Appl 1:1–4

Mano JOF, Hungerford G, Gómez Ribelles JL (2008) Bioactive poly(L-lactic acid)-chitosan hybrid scaffolds. Mater Sci Eng, C 28(8):1356–1365

Lebourg M, Anton JS, Ribelles JLG (2010) Hybrid structure in PCL-HAp scaffold resulting from biomimetic apatite growth. J Mater Sci Mater Med 21(1):33–44

Demirdögen B et al (2013) Silica coating of the pore walls of a microporous polycaprolactone membrane to be used in bone tissue engineering. J Biomed Mater Res A. doi: 10.1002/jbma.34999

Dinelli M, Fabbri E, Bondioli F (2011) TiO2-SiO2 hard coating on polycarbonate substrate by microwave assisted sol–gel technique. J Sol-Gel Sci Technol 58(2):463–469

Wei YC et al (1992) The crosslinking of chitosan fibers. J Polym Sci, Part A: Polym Chem 30(10):2187–2193

Kildeeva NR et al (2009) About mechanism of chitosan cross-linking with glutaraldehyde. Russ J Bioorg Chem 35(3):360–369

Schiffman JD, Schauer CL (2006) Cross-linking chitosan nanofibers. Biomacromolecules 8(2):594–601

Mahony O et al (2010) Silica-Gelatin hybrids with tailorable degradation and mechanical properties for tissue regeneration. Adv Funct Mater 20:3835–3845

Shirosaki Y et al (2010) Preparation of osteocompatible Si(IV)-enriched chitosan–silicate hybrids. J Ceram Soc Jpn 118(11):989–992

Shirosaki Y et al (2009) Physical, chemical and in vitro biological profile of chitosan hybrid membrane as a function of organosiloxane concentration. Acta Biomater 5(1):346–355

Ho M-H et al (2004) Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials 25(1):129–138

Suzuki T et al (1999) Further biocompatibility testing of silica–chitosan complex membrane in the production of tissue plasminogen activator by epithelial and fibroblast cells. J Biosci Bioeng 88(2):194–199

Hayes WC et al (1972) A mathematical analysis for indentation tests of articular cartilage. J Biomech 5(5):541–551

Cheng L et al (2000) Flat-punch indentation of viscoelastic material. J Polym Sci, Part B: Polym Phys 38(1):10–22

Ebenstein DM, Pruitt LA (2006) Nanoindentation of biological materials. Nano Today 1(3):26–33

Deplaine H et al (2013) Biomimetic hydroxyapatite coating on pore walls improves osteointegration of poly(L-lactic acid) scaffolds. J Biomed Mater Res Part B Appl Biomater 101B(1):173–186

Lebourg M et al (2013) Different hyaluronic acid morphology modulates primary articular chondrocyte behavior in hyaluronic acid-coated polycaprolactone scaffolds. J Biomed Mater Res, Part A 101A(2):518–527

Ma ZW et al (2003) Paraffin spheres as porogen to fabricate poly(L-lactic acid) scaffolds with improved cytocompatibility for cartilage tissue engineering. J Biomed Mater Res Part B Appl Biomater 67B(1):610–617

Santamaria VA et al (2012) Influence of the macro and micro-porous structure on the mechanical behavior of poly(L-lactic acid) scaffolds. J Non-Cryst Solids 358(23):3141–3149

Kyritsis A et al (1995) Polymer-water interactions in poly(hydroxyethyl acrylate) hydrogels studied by dielectric, calorimetric and sorption isotherm measurements. Polym Gels Netw 3(4):445–469

Pandis C et al (2011) Water sorption characteristics of poly(2-hydroxyethyl acrylate)/silica nanocomposite hydrogels. J Polym Sci, Part B: Polym Phys 49(9):657–668

Neto CGT et al (2005) Thermal analysis of chitosan based networks. Carbohydr Polym 62(2):97–103

Pawlak A, Mucha M (2003) Thermogravimetric and FTIR studies of chitosan blends. Thermochim Acta 396(12):153–166

Wanjun T, Cunxin W, Donghua C (2005) Kinetic studies on the pyrolysis of chitin and chitosan. Polym Degrad Stab 87(3):389–394

Liu Y-L, Su Y-H, Lai J-Y (2004) In situ crosslinking of chitosan and formation of chitosan–silica hybrid membranes with using 3-glycidoxypropyltrimethoxysilane as a crosslinking agent. Polymer 45(20):6831–6837

Lebourg M, Antón JS, Ribelles JLG (2008) Porous membranes of PLLA-PCL blend for tissue engineering applications. Eur Polym J 44(7):2207–2218

Oh SH et al (2007) In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials 28(9):1664–1671

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem