Gong, K., Du, F., Xia, Z., Durstock, M., & Dai, L. (2009). Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction. Science, 323(5915), 760-764. doi:10.1126/science.1168049
Wang, Z., Jia, R., Zheng, J., Zhao, J., Li, L., Song, J., & Zhu, Z. (2011). Nitrogen-Promoted Self-Assembly of N-Doped Carbon Nanotubes and Their Intrinsic Catalysis for Oxygen Reduction in Fuel Cells. ACS Nano, 5(3), 1677-1684. doi:10.1021/nn1030127
Sharifi, T., Hu, G., Jia, X., & Wågberg, T. (2012). Formation of Active Sites for Oxygen Reduction Reactions by Transformation of Nitrogen Functionalities in Nitrogen-Doped Carbon Nanotubes. ACS Nano, 6(10), 8904-8912. doi:10.1021/nn302906r
[+]
Gong, K., Du, F., Xia, Z., Durstock, M., & Dai, L. (2009). Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction. Science, 323(5915), 760-764. doi:10.1126/science.1168049
Wang, Z., Jia, R., Zheng, J., Zhao, J., Li, L., Song, J., & Zhu, Z. (2011). Nitrogen-Promoted Self-Assembly of N-Doped Carbon Nanotubes and Their Intrinsic Catalysis for Oxygen Reduction in Fuel Cells. ACS Nano, 5(3), 1677-1684. doi:10.1021/nn1030127
Sharifi, T., Hu, G., Jia, X., & Wågberg, T. (2012). Formation of Active Sites for Oxygen Reduction Reactions by Transformation of Nitrogen Functionalities in Nitrogen-Doped Carbon Nanotubes. ACS Nano, 6(10), 8904-8912. doi:10.1021/nn302906r
Qu, L., Liu, Y., Baek, J.-B., & Dai, L. (2010). Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells. ACS Nano, 4(3), 1321-1326. doi:10.1021/nn901850u
Lai, L., Potts, J. R., Zhan, D., Wang, L., Poh, C. K., Tang, C., … Ruoff, R. S. (2012). Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy & Environmental Science, 5(7), 7936. doi:10.1039/c2ee21802j
Choi, C. H., Lim, H.-K., Chung, M. W., Park, J. C., Shin, H., Kim, H., & Woo, S. I. (2014). Long-Range Electron Transfer over Graphene-Based Catalyst for High-Performing Oxygen Reduction Reactions: Importance of Size, N-doping, and Metallic Impurities. Journal of the American Chemical Society, 136(25), 9070-9077. doi:10.1021/ja5033474
Rao, C. V., Cabrera, C. R., & Ishikawa, Y. (2010). In Search of the Active Site in Nitrogen-Doped Carbon Nanotube Electrodes for the Oxygen Reduction Reaction. The Journal of Physical Chemistry Letters, 1(18), 2622-2627. doi:10.1021/jz100971v
Xing, T., Zheng, Y., Li, L. H., Cowie, B. C. C., Gunzelmann, D., Qiao, S. Z., … Chen, Y. (2014). Observation of Active Sites for Oxygen Reduction Reaction on Nitrogen-Doped Multilayer Graphene. ACS Nano, 8(7), 6856-6862. doi:10.1021/nn501506p
Wang, L., Ambrosi, A., & Pumera, M. (2013). «Metal-Free» Catalytic Oxygen Reduction Reaction on Heteroatom-Doped Graphene is Caused by Trace Metal Impurities. Angewandte Chemie International Edition, 52(51), 13818-13821. doi:10.1002/anie.201309171
Feng, Y., Li, F., Hu, Z., Luo, X., Zhang, L., Zhou, X.-F., … Wang, E. G. (2012). Tuning the catalytic property of nitrogen-doped graphene for cathode oxygen reduction reaction. Physical Review B, 85(15). doi:10.1103/physrevb.85.155454
Luo, Z., Lim, S., Tian, Z., Shang, J., Lai, L., MacDonald, B., … Lin, J. (2011). Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property. Journal of Materials Chemistry, 21(22), 8038. doi:10.1039/c1jm10845j
Yu, L., Pan, X., Cao, X., Hu, P., & Bao, X. (2011). Oxygen reduction reaction mechanism on nitrogen-doped graphene: A density functional theory study. Journal of Catalysis, 282(1), 183-190. doi:10.1016/j.jcat.2011.06.015
Boukhvalov, D. W., & Son, Y.-W. (2012). Oxygen reduction reactions on pure and nitrogen-doped graphene: a first-principles modeling. Nanoscale, 4(2), 417-420. doi:10.1039/c1nr11307k
Yasuda, S., Yu, L., Kim, J., & Murakoshi, K. (2013). Selective nitrogen doping in graphene for oxygen reduction reactions. Chemical Communications, 49(83), 9627. doi:10.1039/c3cc45641b
Wang, H., Maiyalagan, T., & Wang, X. (2012). Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications. ACS Catalysis, 2(5), 781-794. doi:10.1021/cs200652y
Zhou, J., Wang, J., Liu, H., Banis, M. N., Sun, X., & Sham, T.-K. (2010). Imaging Nitrogen in Individual Carbon Nanotubes. The Journal of Physical Chemistry Letters, 1(11), 1709-1713. doi:10.1021/jz100376v
Meyer, J. C., Kurasch, S., Park, H. J., Skakalova, V., Künzel, D., Groß, A., … Kaiser, U. (2011). Experimental analysis of charge redistribution due to chemical bonding by high-resolution transmission electron microscopy. Nature Materials, 10(3), 209-215. doi:10.1038/nmat2941
Zhao, L., He, R., Rim, K. T., Schiros, T., Kim, K. S., Zhou, H., … Pasupathy, A. N. (2011). Visualizing Individual Nitrogen Dopants in Monolayer Graphene. Science, 333(6045), 999-1003. doi:10.1126/science.1208759
Lv, R., Li, Q., Botello-Méndez, A. R., Hayashi, T., Wang, B., Berkdemir, A., … Terrones, M. (2012). Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Scientific Reports, 2(1). doi:10.1038/srep00586
Arenal, R., March, K., Ewels, C. P., Rocquefelte, X., Kociak, M., Loiseau, A., & Stéphan, O. (2014). Atomic Configuration of Nitrogen-Doped Single-Walled Carbon Nanotubes. Nano Letters, 14(10), 5509-5516. doi:10.1021/nl501645g
Delley, B. (2006). The conductor-like screening model for polymers and surfaces. Molecular Simulation, 32(2), 117-123. doi:10.1080/08927020600589684
[-]