Mostrar el registro sencillo del ítem
dc.contributor.author | Escobar Ivirico, Jorge Luis | es_ES |
dc.contributor.author | Salmerón Sánchez, Manuel | es_ES |
dc.contributor.author | Gómez Ribelles, José Luís | es_ES |
dc.contributor.author | Monleón Pradas, Manuel | es_ES |
dc.date.accessioned | 2016-05-17T09:15:03Z | |
dc.date.available | 2016-05-17T09:15:03Z | |
dc.date.issued | 2011 | |
dc.identifier.issn | 0959-8103 | |
dc.identifier.uri | http://hdl.handle.net/10251/64209 | |
dc.description.abstract | New biodegradable block copolymer networks were synthesized from methacrylate-terminated poly(L-lactide) (mLA) and polycaprolactone (mCL) macromers. This allowed the realization of a series of materials in which the macromer ratio can be used to tailor the physical and mechanical properties of the materials. The synthesis of the macromers was characterized using Fourier transform infrared (FTIR) spectroscopy and 1H NMR spectroscopy. Poly(mCL) and poly(mLA) networks were prepared by photopolymerization of the macromers, and copolymers were also prepared from the two macromers in various proportions. The phase microstructure of the new systems and the network architecture were investigated using differential scanning calorimetry, FTIR spectroscopy, dynamic mechanical analysis and thermogravimetry studies. Ideal structure, compatible with the experiments results, for biodegradable poly(L-lactide) and polycaprolactone block copolymer networks. Copyright © 2010 Society of Chemical Industry. | es_ES |
dc.description.sponsorship | The authors acknowledge the support of the Spanish Science & Innovation Ministry through project MAT2008-06434. JLEI acknowledge the support of Spanish Science & Innovation Ministry through the "Campus de Excelencia Internacional" program consistent with Polytechnic University of Valencia. The authors also acknowledge the support of CIBER-BBN which is an initiative funded by the VI National R&D&D&i Plan 2008 - 2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund and the funding by the Centro de Investigacion Principe Felipe in the field of regenerative medicine through the collaboration agreement from the Conselleria de Sanidad (Generalitat Valenciana) and the Instituto de Salud Carlos III (Ministry of Science and Innovation). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley | es_ES |
dc.relation.ispartof | Polymer International | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Biodegradable | es_ES |
dc.subject | Block copolymer | es_ES |
dc.subject | Poly(L-lactide) | es_ES |
dc.subject | Polycaprolactone | es_ES |
dc.subject | Polyester | es_ES |
dc.subject | Polymer network | es_ES |
dc.subject | Biodegradable block copolymers | es_ES |
dc.subject | Copolymer networks | es_ES |
dc.subject | FTIR spectroscopy | es_ES |
dc.subject | H NMR spectroscopy | es_ES |
dc.subject | Macromer ratio | es_ES |
dc.subject | Macromers | es_ES |
dc.subject | New system | es_ES |
dc.subject | Physical and mechanical properties | es_ES |
dc.subject | Poly (l-lactide) | es_ES |
dc.subject | Thermogravimetry | es_ES |
dc.subject | Biodegradable polymers | es_ES |
dc.subject | Block copolymers | es_ES |
dc.subject | Copolymerization | es_ES |
dc.subject | Differential scanning calorimetry | es_ES |
dc.subject | Dynamic analysis | es_ES |
dc.subject | Dynamic mechanical analysis | es_ES |
dc.subject | Fourier transform infrared spectroscopy | es_ES |
dc.subject | Fourier transforms | es_ES |
dc.subject | Materials properties | es_ES |
dc.subject | Mechanical properties | es_ES |
dc.subject | Network architecture | es_ES |
dc.subject | Nuclear magnetic resonance spectroscopy | es_ES |
dc.subject | Photopolymerization | es_ES |
dc.subject | Plastic products | es_ES |
dc.subject | Thermogravimetric analysis | es_ES |
dc.subject | Organic polymers | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Biodegradable poly(L-lactide) and polycaprolactone block copolymer networks | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/pi.2938 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MAT2008-06434/ES/MATERIALES PARA REGENERACION NEURAL Y ANGIOGENESIS EN EL SISTEMA NERVIOSO CENTRAL/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular | es_ES |
dc.description.bibliographicCitation | Escobar Ivirico, JL.; Salmerón Sánchez, M.; Gómez Ribelles, JL.; Monleón Pradas, M. (2011). Biodegradable poly(L-lactide) and polycaprolactone block copolymer networks. Polymer International. 60(2):264-270. https://doi.org/10.1002/pi.2938 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1002/pi.2938 | es_ES |
dc.description.upvformatpinicio | 264 | es_ES |
dc.description.upvformatpfin | 270 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 60 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 191788 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Centro de Investigación Príncipe Felipe | es_ES |
dc.contributor.funder | Instituto de Salud Carlos III | es_ES |
dc.description.references | Pitt, C. G., Chasalow, F. I., Hibionada, Y. M., Klimas, D. M., & Schindler, A. (1981). Aliphatic polyesters. I. The degradation of poly(ϵ-caprolactone)in vivo. Journal of Applied Polymer Science, 26(11), 3779-3787. doi:10.1002/app.1981.070261124 | es_ES |
dc.description.references | Engelberg, I., & Kohn, J. (1991). Physico-mechanical properties of degradable polymers used in medical applications: A comparative study. Biomaterials, 12(3), 292-304. doi:10.1016/0142-9612(91)90037-b | es_ES |
dc.description.references | Ali, S. A. M., Zhong, S.-P., Doherty, P. J., & Williams, D. F. (1993). Mechanisms of polymer degradation in implantable devices. Biomaterials, 14(9), 648-656. doi:10.1016/0142-9612(93)90063-8 | es_ES |
dc.description.references | Edlund, U., & Albertsson, A.-C. (2000). Morphology engineering of a novel poly(L-lactide)/poly(1,5-dioxepan-2-one) microsphere system for controlled drug delivery. Journal of Polymer Science Part A: Polymer Chemistry, 38(5), 786-796. doi:10.1002/(sici)1099-0518(20000301)38:5<786::aid-pola2>3.0.co;2-7 | es_ES |
dc.description.references | Ajji, A., & Renaud, M. C. (1991). Mechanical properties of oriented poly(vinyl chloride)–poly(caprolactone) blends. Journal of Applied Polymer Science, 42(2), 335-345. doi:10.1002/app.1991.070420205 | es_ES |
dc.description.references | Chiu, S.-C., & Smith, T. G. (1984). Compatibility of poly(ε-caprolactone) (PCL) and poly(styrene-co-acrylonitrile) (SAN) blends. II. The influence of the AN content in SAN copolymer upon blend compatibility. Journal of Applied Polymer Science, 29(5), 1797-1814. doi:10.1002/app.1984.070290532 | es_ES |
dc.description.references | Edlund, U., & Albertsson, A.-C. (1999). Novel drug delivery microspheres from poly(1,5-dioxepan-2-one-co-L-lactide). Journal of Polymer Science Part A: Polymer Chemistry, 37(12), 1877-1884. doi:10.1002/(sici)1099-0518(19990615)37:12<1877::aid-pola17>3.0.co;2-4 | es_ES |
dc.description.references | EDLUND, U., & ALBERTSSON, A.-C. (2000). Microspheres from Poly(D,L-lactide)/ Poly(1,5-dioxepan-2-one) Miscible Blends for Controlled Drug Delivery. Journal of Bioactive and Compatible Polymers, 15(3), 214-229. doi:10.1106/me8a-mubn-4lfh-p6xq | es_ES |
dc.description.references | Lou, C.-W., Yao, C.-H., Chen, Y.-S., Hsieh, T.-C., Lin, J.-H., & Hsing, W.-H. (2008). Manufacturing and Properties of PLA Absorbable Surgical Suture. Textile Research Journal, 78(11), 958-965. doi:10.1177/0040517507087856 | es_ES |
dc.description.references | Zurita, R., Puiggalí, J., & Rodríguez-Galán, A. (2006). Loading and Release of Ibuprofen in Multi- and Monofilament Surgical Sutures. Macromolecular Bioscience, 6(9), 767-775. doi:10.1002/mabi.200600084 | es_ES |
dc.description.references | Lim Soo, P., Cho, J., Grant, J., Ho, E., Piquette-Miller, M., & Allen, C. (2008). Drug release mechanism of paclitaxel from a chitosan–lipid implant system: Effect of swelling, degradation and morphology. European Journal of Pharmaceutics and Biopharmaceutics, 69(1), 149-157. doi:10.1016/j.ejpb.2007.11.003 | es_ES |
dc.description.references | DEPAN, D., KUMAR, A., & SINGH, R. (2009). Cell proliferation and controlled drug release studies of nanohybrids based on chitosan-g-lactic acid and montmorillonite. Acta Biomaterialia, 5(1), 93-100. doi:10.1016/j.actbio.2008.08.007 | es_ES |
dc.description.references | Kalb, B., & Pennings, A. J. (1980). General crystallization behaviour of poly(l-lactic acid). Polymer, 21(6), 607-612. doi:10.1016/0032-3861(80)90315-8 | es_ES |
dc.description.references | Jamshidi, K., Hyon, S.-H., & Ikada, Y. (1988). Thermal characterization of polylactides. Polymer, 29(12), 2229-2234. doi:10.1016/0032-3861(88)90116-4 | es_ES |
dc.description.references | Brode, G. L., & Koleske, J. V. (1972). Lactone Polymerization and Polymer Properties. Journal of Macromolecular Science: Part A - Chemistry, 6(6), 1109-1144. doi:10.1080/10601327208056888 | es_ES |
dc.description.references | Wu, D., Zhang, Y., Zhang, M., & Zhou, W. (2008). Phase behavior and its viscoelastic response of polylactide/poly(ε-caprolactone) blend. European Polymer Journal, 44(7), 2171-2183. doi:10.1016/j.eurpolymj.2008.04.023 | es_ES |
dc.description.references | Todo, M., Park, S.-D., Takayama, T., & Arakawa, K. (2007). Fracture micromechanisms of bioabsorbable PLLA/PCL polymer blends. Engineering Fracture Mechanics, 74(12), 1872-1883. doi:10.1016/j.engfracmech.2006.05.021 | es_ES |
dc.description.references | Yu, Z., Yin, J., Yan, S., Xie, Y., Ma, J., & Chen, X. (2007). Biodegradable poly(l-lactide)/poly(ɛ-caprolactone)-modified montmorillonite nanocomposites: Preparation and characterization. Polymer, 48(21), 6439-6447. doi:10.1016/j.polymer.2007.07.024 | es_ES |
dc.description.references | Broz, M. (2003). Structure and mechanical properties of poly(?,?-lactic acid)/poly(ɛ-caprolactone) blends. Biomaterials, 24(23), 4181-4190. doi:10.1016/s0142-9612(03)00314-4 | es_ES |
dc.description.references | Zhang, L., Xiong, C., & Deng, X. (1995). Biodegradable polyester blends for biomedical application. Journal of Applied Polymer Science, 56(1), 103-112. doi:10.1002/app.1995.070560114 | es_ES |
dc.description.references | Huang, M.-H., Li, S., & Vert, M. (2004). Synthesis and degradation of PLA–PCL–PLA triblock copolymer prepared by successive polymerization of ε-caprolactone and dl-lactide. Polymer, 45(26), 8675-8681. doi:10.1016/j.polymer.2004.10.054 | es_ES |
dc.description.references | Feng (S. T. Voong), X. D., Song, C. X., & Chen, W. Y. (1983). Synthesis and evaluation of biodegradable block copolymers of ɛ-caprolactone and DL-lactide. Journal of Polymer Science: Polymer Letters Edition, 21(8), 593-600. doi:10.1002/pol.1983.130210802 | es_ES |
dc.description.references | Ye, W.-P., & Chien, Y. W. (1996). Dual-controlled drug delivery across biodegradable copolymer. II. Delivery kinetics of levonorgestrel and estradiol from (matrix/matrix) laminate drug delivery system. Journal of Controlled Release, 41(3), 259-269. doi:10.1016/0168-3659(96)01330-2 | es_ES |
dc.description.references | Lang, M., Wong, R. P., & Chu, C.-C. (2002). Synthesis and structural analysis of functionalized poly (?-caprolactone)-based three-arm star polymers. Journal of Polymer Science Part A: Polymer Chemistry, 40(8), 1127-1141. doi:10.1002/pola.10171 | es_ES |
dc.description.references | Lang, M., & Chu, C.-C. (2002). Functionalized multiarm poly(?-caprolactone)s: Synthesis, structure analysis, and network formation. Journal of Applied Polymer Science, 86(9), 2296-2306. doi:10.1002/app.11221 | es_ES |
dc.description.references | Burdick, J. A., Philpott, L. M., & Anseth, K. S. (2001). Synthesis and characterization of tetrafunctional lactic acid oligomers: A potentialin situ forming degradable orthopaedic biomaterial. Journal of Polymer Science Part A: Polymer Chemistry, 39(5), 683-692. doi:10.1002/1099-0518(20010301)39:5<683::aid-pola1040>3.0.co;2-z | es_ES |
dc.description.references | Storey, R. F., Wiggins, J. S., Mauritz, K. A., & Puckett, A. D. (1993). Bioabsorbable composites. I: Fundamental design considerations using free radically crosslinkable matrices. Polymer Composites, 14(1), 7-16. doi:10.1002/pc.750140103 | es_ES |
dc.description.references | Han, Y.-K., Edelman, P. G., & Huang, S. J. (1988). Synthesis and Characterization of Crosslinked Polymers for Biomedical Composites. Journal of Macromolecular Science: Part A - Chemistry, 25(5-7), 847-869. doi:10.1080/00222338808053402 | es_ES |
dc.description.references | Turunen, M. P. K., Korhonen, H., Tuominen, J., & Seppälä, J. V. (2001). Synthesis, characterization and crosslinking of functional star-shaped poly(ε-caprolactone). Polymer International, 51(1), 92-100. doi:10.1002/pi.805 | es_ES |
dc.description.references | Sawhney, A. S., Pathak, C. P., & Hubbell, J. A. (1993). Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(.alpha.-hydroxy acid) diacrylate macromers. Macromolecules, 26(4), 581-587. doi:10.1021/ma00056a005 | es_ES |
dc.description.references | Storey, R. F., Warren, S. C., Allison, C. J., Wiggins, J. S., & Puckett, A. . (1993). Synthesis of bioabsorbable networks from methacrylate-endcapped polyesters. Polymer, 34(20), 4365-4372. doi:10.1016/0032-3861(93)90203-m | es_ES |
dc.description.references | Storey, R. F., Warren, S. C., Allison, C. ., & Puckett, A. . (1997). Methacrylate-endcapped poly(d,l-lactide-co-trimethylene carbonate) oligomers. Network formation by thermal free-radical curing. Polymer, 38(26), 6295-6301. doi:10.1016/s0032-3861(97)00208-5 | es_ES |
dc.description.references | Davis, K. A., Burdick, J. A., & Anseth, K. S. (2003). Photoinitiated crosslinked degradable copolymer networks for tissue engineering applications. Biomaterials, 24(14), 2485-2495. doi:10.1016/s0142-9612(02)00582-3 | es_ES |
dc.description.references | Takao, A., Fusae, M., & Yu, N. (1994). Preparation of cross-linked aliphatic polyester and application to thermo-responsive material. Journal of Controlled Release, 32(1), 87-96. doi:10.1016/0168-3659(94)90228-3 | es_ES |
dc.description.references | Mizutani, M., & Matsuda, T. (2002). Liquid acrylate-endcapped biodegradable poly(?-caprolactone-co-trimethylene carbonate). I. Preparation and visible light-induced photocuring characteristics. Journal of Biomedical Materials Research, 62(3), 387-394. doi:10.1002/jbm.10294 | es_ES |
dc.description.references | Domb, A. J., Mathiowitz, E., Ron, E., Giannos, S., & Langer, R. (1991). Polyanhydrides. IV. Unsaturated and crosslinked polyanhydrides. Journal of Polymer Science Part A: Polymer Chemistry, 29(4), 571-579. doi:10.1002/pola.1991.080290413 | es_ES |
dc.description.references | Anseth, K. S., Shastri, V. R., & Langer, R. (1999). Photopolymerizable degradable polyanhydrides with osteocompatibility. Nature Biotechnology, 17(2), 156-159. doi:10.1038/6152 | es_ES |
dc.description.references | Kim, B. S., Hrkach, J. S., & Langer, R. (2000). Synthesis and characterization of novel degradable photocrosslinked poly(ether-anhydride) networks. Journal of Polymer Science Part A: Polymer Chemistry, 38(8), 1277-1282. doi:10.1002/(sici)1099-0518(20000415)38:8<1277::aid-pola11>3.0.co;2-s | es_ES |
dc.description.references | Korhonen, H., & Seppälä, J. V. (2001). Synthesis of poly(ester-anhydride)s based on poly(ϵ-caprolactone) prepolymer. Journal of Applied Polymer Science, 81(1), 176-185. doi:10.1002/app.1427 | es_ES |
dc.description.references | Escobar Ivirico, J. L., Salmerón Sánchez, M., Sabater i Serra, R., Meseguer Dueñas, J. M., Gómez Ribelles, J. L., & Monleón Pradas, M. (2006). Structure and Properties of Poly(ɛ-caprolactone) Networks with Modulated Water Uptake. Macromolecular Chemistry and Physics, 207(23), 2195-2205. doi:10.1002/macp.200600399 | es_ES |
dc.description.references | Sabater i Serra, R., Escobar Ivirico, J. L., Meseguer Dueñas, J. M., Andrio Balado, A., Gómez Ribelles, J. L., & Salmerón Sánchez, M. (2007). Dielectric relaxation spectrum of poly (ε-caprolactone) networks hydrophilized by copolymerization with 2-hydroxyethyl acrylate. The European Physical Journal E, 22(4), 293-302. doi:10.1140/epje/e2007-00036-7 | es_ES |
dc.description.references | Sabater i Serra, R., Escobar Ivirico, J. L., Meseguer Dueñas, J. M., Balado, A. A., Gómez Ribelles, J. L., & Salmerón Sánchez, M. (2009). Segmental dynamics in poly(ε-caprolactone)/poly(L-lactide) copolymer networks. Journal of Polymer Science Part B: Polymer Physics, 47(2), 183-193. doi:10.1002/polb.21629 | es_ES |
dc.description.references | Escobar Ivirico, J. L., Salmerón-Sánchez, M., Gómez Ribelles, J. L., & Monleón Pradas, M. (2009). Poly(l-lactide) networks with tailored water sorption. Colloid and Polymer Science, 287(6), 671-681. doi:10.1007/s00396-009-2026-z | es_ES |