- -

Biodegradable poly(L-lactide) and polycaprolactone block copolymer networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Biodegradable poly(L-lactide) and polycaprolactone block copolymer networks

Mostrar el registro completo del ítem

Escobar Ivirico, JL.; Salmerón Sánchez, M.; Gómez Ribelles, JL.; Monleón Pradas, M. (2011). Biodegradable poly(L-lactide) and polycaprolactone block copolymer networks. Polymer International. 60(2):264-270. https://doi.org/10.1002/pi.2938

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/64209

Ficheros en el ítem

Metadatos del ítem

Título: Biodegradable poly(L-lactide) and polycaprolactone block copolymer networks
Autor: Escobar Ivirico, Jorge Luis Salmerón Sánchez, Manuel Gómez Ribelles, José Luís Monleón Pradas, Manuel
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular
Fecha difusión:
Resumen:
New biodegradable block copolymer networks were synthesized from methacrylate-terminated poly(L-lactide) (mLA) and polycaprolactone (mCL) macromers. This allowed the realization of a series of materials in which the macromer ...[+]
Palabras clave: Biodegradable , Block copolymer , Poly(L-lactide) , Polycaprolactone , Polyester , Polymer network , Biodegradable block copolymers , Copolymer networks , FTIR spectroscopy , H NMR spectroscopy , Macromer ratio , Macromers , New system , Physical and mechanical properties , Poly (l-lactide) , Thermogravimetry , Biodegradable polymers , Block copolymers , Copolymerization , Differential scanning calorimetry , Dynamic analysis , Dynamic mechanical analysis , Fourier transform infrared spectroscopy , Fourier transforms , Materials properties , Mechanical properties , Network architecture , Nuclear magnetic resonance spectroscopy , Photopolymerization , Plastic products , Thermogravimetric analysis , Organic polymers
Derechos de uso: Cerrado
Fuente:
Polymer International. (issn: 0959-8103 )
DOI: 10.1002/pi.2938
Editorial:
Wiley
Versión del editor: http://dx.doi.org/10.1002/pi.2938
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//MAT2008-06434/ES/MATERIALES PARA REGENERACION NEURAL Y ANGIOGENESIS EN EL SISTEMA NERVIOSO CENTRAL/
Agradecimientos:
The authors acknowledge the support of the Spanish Science & Innovation Ministry through project MAT2008-06434. JLEI acknowledge the support of Spanish Science & Innovation Ministry through the "Campus de Excelencia ...[+]
Tipo: Artículo

References

Pitt, C. G., Chasalow, F. I., Hibionada, Y. M., Klimas, D. M., & Schindler, A. (1981). Aliphatic polyesters. I. The degradation of poly(ϵ-caprolactone)in vivo. Journal of Applied Polymer Science, 26(11), 3779-3787. doi:10.1002/app.1981.070261124

Engelberg, I., & Kohn, J. (1991). Physico-mechanical properties of degradable polymers used in medical applications: A comparative study. Biomaterials, 12(3), 292-304. doi:10.1016/0142-9612(91)90037-b

Ali, S. A. M., Zhong, S.-P., Doherty, P. J., & Williams, D. F. (1993). Mechanisms of polymer degradation in implantable devices. Biomaterials, 14(9), 648-656. doi:10.1016/0142-9612(93)90063-8 [+]
Pitt, C. G., Chasalow, F. I., Hibionada, Y. M., Klimas, D. M., & Schindler, A. (1981). Aliphatic polyesters. I. The degradation of poly(ϵ-caprolactone)in vivo. Journal of Applied Polymer Science, 26(11), 3779-3787. doi:10.1002/app.1981.070261124

Engelberg, I., & Kohn, J. (1991). Physico-mechanical properties of degradable polymers used in medical applications: A comparative study. Biomaterials, 12(3), 292-304. doi:10.1016/0142-9612(91)90037-b

Ali, S. A. M., Zhong, S.-P., Doherty, P. J., & Williams, D. F. (1993). Mechanisms of polymer degradation in implantable devices. Biomaterials, 14(9), 648-656. doi:10.1016/0142-9612(93)90063-8

Edlund, U., & Albertsson, A.-C. (2000). Morphology engineering of a novel poly(L-lactide)/poly(1,5-dioxepan-2-one) microsphere system for controlled drug delivery. Journal of Polymer Science Part A: Polymer Chemistry, 38(5), 786-796. doi:10.1002/(sici)1099-0518(20000301)38:5<786::aid-pola2>3.0.co;2-7

Ajji, A., & Renaud, M. C. (1991). Mechanical properties of oriented poly(vinyl chloride)–poly(caprolactone) blends. Journal of Applied Polymer Science, 42(2), 335-345. doi:10.1002/app.1991.070420205

Chiu, S.-C., & Smith, T. G. (1984). Compatibility of poly(ε-caprolactone) (PCL) and poly(styrene-co-acrylonitrile) (SAN) blends. II. The influence of the AN content in SAN copolymer upon blend compatibility. Journal of Applied Polymer Science, 29(5), 1797-1814. doi:10.1002/app.1984.070290532

Edlund, U., & Albertsson, A.-C. (1999). Novel drug delivery microspheres from poly(1,5-dioxepan-2-one-co-L-lactide). Journal of Polymer Science Part A: Polymer Chemistry, 37(12), 1877-1884. doi:10.1002/(sici)1099-0518(19990615)37:12<1877::aid-pola17>3.0.co;2-4

EDLUND, U., & ALBERTSSON, A.-C. (2000). Microspheres from Poly(D,L-lactide)/ Poly(1,5-dioxepan-2-one) Miscible Blends for Controlled Drug Delivery. Journal of Bioactive and Compatible Polymers, 15(3), 214-229. doi:10.1106/me8a-mubn-4lfh-p6xq

Lou, C.-W., Yao, C.-H., Chen, Y.-S., Hsieh, T.-C., Lin, J.-H., & Hsing, W.-H. (2008). Manufacturing and Properties of PLA Absorbable Surgical Suture. Textile Research Journal, 78(11), 958-965. doi:10.1177/0040517507087856

Zurita, R., Puiggalí, J., & Rodríguez-Galán, A. (2006). Loading and Release of Ibuprofen in Multi- and Monofilament Surgical Sutures. Macromolecular Bioscience, 6(9), 767-775. doi:10.1002/mabi.200600084

Lim Soo, P., Cho, J., Grant, J., Ho, E., Piquette-Miller, M., & Allen, C. (2008). Drug release mechanism of paclitaxel from a chitosan–lipid implant system: Effect of swelling, degradation and morphology. European Journal of Pharmaceutics and Biopharmaceutics, 69(1), 149-157. doi:10.1016/j.ejpb.2007.11.003

DEPAN, D., KUMAR, A., & SINGH, R. (2009). Cell proliferation and controlled drug release studies of nanohybrids based on chitosan-g-lactic acid and montmorillonite. Acta Biomaterialia, 5(1), 93-100. doi:10.1016/j.actbio.2008.08.007

Kalb, B., & Pennings, A. J. (1980). General crystallization behaviour of poly(l-lactic acid). Polymer, 21(6), 607-612. doi:10.1016/0032-3861(80)90315-8

Jamshidi, K., Hyon, S.-H., & Ikada, Y. (1988). Thermal characterization of polylactides. Polymer, 29(12), 2229-2234. doi:10.1016/0032-3861(88)90116-4

Brode, G. L., & Koleske, J. V. (1972). Lactone Polymerization and Polymer Properties. Journal of Macromolecular Science: Part A - Chemistry, 6(6), 1109-1144. doi:10.1080/10601327208056888

Wu, D., Zhang, Y., Zhang, M., & Zhou, W. (2008). Phase behavior and its viscoelastic response of polylactide/poly(ε-caprolactone) blend. European Polymer Journal, 44(7), 2171-2183. doi:10.1016/j.eurpolymj.2008.04.023

Todo, M., Park, S.-D., Takayama, T., & Arakawa, K. (2007). Fracture micromechanisms of bioabsorbable PLLA/PCL polymer blends. Engineering Fracture Mechanics, 74(12), 1872-1883. doi:10.1016/j.engfracmech.2006.05.021

Yu, Z., Yin, J., Yan, S., Xie, Y., Ma, J., & Chen, X. (2007). Biodegradable poly(l-lactide)/poly(ɛ-caprolactone)-modified montmorillonite nanocomposites: Preparation and characterization. Polymer, 48(21), 6439-6447. doi:10.1016/j.polymer.2007.07.024

Broz, M. (2003). Structure and mechanical properties of poly(?,?-lactic acid)/poly(ɛ-caprolactone) blends. Biomaterials, 24(23), 4181-4190. doi:10.1016/s0142-9612(03)00314-4

Zhang, L., Xiong, C., & Deng, X. (1995). Biodegradable polyester blends for biomedical application. Journal of Applied Polymer Science, 56(1), 103-112. doi:10.1002/app.1995.070560114

Huang, M.-H., Li, S., & Vert, M. (2004). Synthesis and degradation of PLA–PCL–PLA triblock copolymer prepared by successive polymerization of ε-caprolactone and dl-lactide. Polymer, 45(26), 8675-8681. doi:10.1016/j.polymer.2004.10.054

Feng (S. T. Voong), X. D., Song, C. X., & Chen, W. Y. (1983). Synthesis and evaluation of biodegradable block copolymers of ɛ-caprolactone and DL-lactide. Journal of Polymer Science: Polymer Letters Edition, 21(8), 593-600. doi:10.1002/pol.1983.130210802

Ye, W.-P., & Chien, Y. W. (1996). Dual-controlled drug delivery across biodegradable copolymer. II. Delivery kinetics of levonorgestrel and estradiol from (matrix/matrix) laminate drug delivery system. Journal of Controlled Release, 41(3), 259-269. doi:10.1016/0168-3659(96)01330-2

Lang, M., Wong, R. P., & Chu, C.-C. (2002). Synthesis and structural analysis of functionalized poly (?-caprolactone)-based three-arm star polymers. Journal of Polymer Science Part A: Polymer Chemistry, 40(8), 1127-1141. doi:10.1002/pola.10171

Lang, M., & Chu, C.-C. (2002). Functionalized multiarm poly(?-caprolactone)s: Synthesis, structure analysis, and network formation. Journal of Applied Polymer Science, 86(9), 2296-2306. doi:10.1002/app.11221

Burdick, J. A., Philpott, L. M., & Anseth, K. S. (2001). Synthesis and characterization of tetrafunctional lactic acid oligomers: A potentialin situ forming degradable orthopaedic biomaterial. Journal of Polymer Science Part A: Polymer Chemistry, 39(5), 683-692. doi:10.1002/1099-0518(20010301)39:5<683::aid-pola1040>3.0.co;2-z

Storey, R. F., Wiggins, J. S., Mauritz, K. A., & Puckett, A. D. (1993). Bioabsorbable composites. I: Fundamental design considerations using free radically crosslinkable matrices. Polymer Composites, 14(1), 7-16. doi:10.1002/pc.750140103

Han, Y.-K., Edelman, P. G., & Huang, S. J. (1988). Synthesis and Characterization of Crosslinked Polymers for Biomedical Composites. Journal of Macromolecular Science: Part A - Chemistry, 25(5-7), 847-869. doi:10.1080/00222338808053402

Turunen, M. P. K., Korhonen, H., Tuominen, J., & Seppälä, J. V. (2001). Synthesis, characterization and crosslinking of functional star-shaped poly(ε-caprolactone). Polymer International, 51(1), 92-100. doi:10.1002/pi.805

Sawhney, A. S., Pathak, C. P., & Hubbell, J. A. (1993). Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(.alpha.-hydroxy acid) diacrylate macromers. Macromolecules, 26(4), 581-587. doi:10.1021/ma00056a005

Storey, R. F., Warren, S. C., Allison, C. J., Wiggins, J. S., & Puckett, A. . (1993). Synthesis of bioabsorbable networks from methacrylate-endcapped polyesters. Polymer, 34(20), 4365-4372. doi:10.1016/0032-3861(93)90203-m

Storey, R. F., Warren, S. C., Allison, C. ., & Puckett, A. . (1997). Methacrylate-endcapped poly(d,l-lactide-co-trimethylene carbonate) oligomers. Network formation by thermal free-radical curing. Polymer, 38(26), 6295-6301. doi:10.1016/s0032-3861(97)00208-5

Davis, K. A., Burdick, J. A., & Anseth, K. S. (2003). Photoinitiated crosslinked degradable copolymer networks for tissue engineering applications. Biomaterials, 24(14), 2485-2495. doi:10.1016/s0142-9612(02)00582-3

Takao, A., Fusae, M., & Yu, N. (1994). Preparation of cross-linked aliphatic polyester and application to thermo-responsive material. Journal of Controlled Release, 32(1), 87-96. doi:10.1016/0168-3659(94)90228-3

Mizutani, M., & Matsuda, T. (2002). Liquid acrylate-endcapped biodegradable poly(?-caprolactone-co-trimethylene carbonate). I. Preparation and visible light-induced photocuring characteristics. Journal of Biomedical Materials Research, 62(3), 387-394. doi:10.1002/jbm.10294

Domb, A. J., Mathiowitz, E., Ron, E., Giannos, S., & Langer, R. (1991). Polyanhydrides. IV. Unsaturated and crosslinked polyanhydrides. Journal of Polymer Science Part A: Polymer Chemistry, 29(4), 571-579. doi:10.1002/pola.1991.080290413

Anseth, K. S., Shastri, V. R., & Langer, R. (1999). Photopolymerizable degradable polyanhydrides with osteocompatibility. Nature Biotechnology, 17(2), 156-159. doi:10.1038/6152

Kim, B. S., Hrkach, J. S., & Langer, R. (2000). Synthesis and characterization of novel degradable photocrosslinked poly(ether-anhydride) networks. Journal of Polymer Science Part A: Polymer Chemistry, 38(8), 1277-1282. doi:10.1002/(sici)1099-0518(20000415)38:8<1277::aid-pola11>3.0.co;2-s

Korhonen, H., & Seppälä, J. V. (2001). Synthesis of poly(ester-anhydride)s based on poly(ϵ-caprolactone) prepolymer. Journal of Applied Polymer Science, 81(1), 176-185. doi:10.1002/app.1427

Escobar Ivirico, J. L., Salmerón Sánchez, M., Sabater i Serra, R., Meseguer Dueñas, J. M., Gómez Ribelles, J. L., & Monleón Pradas, M. (2006). Structure and Properties of Poly(ɛ-caprolactone) Networks with Modulated Water Uptake. Macromolecular Chemistry and Physics, 207(23), 2195-2205. doi:10.1002/macp.200600399

Sabater i Serra, R., Escobar Ivirico, J. L., Meseguer Dueñas, J. M., Andrio Balado, A., Gómez Ribelles, J. L., & Salmerón Sánchez, M. (2007). Dielectric relaxation spectrum of poly (ε-caprolactone) networks hydrophilized by copolymerization with 2-hydroxyethyl acrylate. The European Physical Journal E, 22(4), 293-302. doi:10.1140/epje/e2007-00036-7

Sabater i Serra, R., Escobar Ivirico, J. L., Meseguer Dueñas, J. M., Balado, A. A., Gómez Ribelles, J. L., & Salmerón Sánchez, M. (2009). Segmental dynamics in poly(ε-caprolactone)/poly(L-lactide) copolymer networks. Journal of Polymer Science Part B: Polymer Physics, 47(2), 183-193. doi:10.1002/polb.21629

Escobar Ivirico, J. L., Salmerón-Sánchez, M., Gómez Ribelles, J. L., & Monleón Pradas, M. (2009). Poly(l-lactide) networks with tailored water sorption. Colloid and Polymer Science, 287(6), 671-681. doi:10.1007/s00396-009-2026-z

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem