- -

Automated Glioblastoma Segmentation Based on a Multiparametric Structured Unsupervised Classification

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Automated Glioblastoma Segmentation Based on a Multiparametric Structured Unsupervised Classification

Show full item record

Juan Albarracín, J.; Fuster García, E.; Manjón Herrera, JV.; Robles Viejo, M.; Aparici, F.; Marti-Bonmati, L.; García Gómez, JM. (2015). Automated Glioblastoma Segmentation Based on a Multiparametric Structured Unsupervised Classification. PLoS ONE. 10(5):1-20. https://doi.org/10.1371/journal.pone.0125143

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/64235

Files in this item

Item Metadata

Title: Automated Glioblastoma Segmentation Based on a Multiparametric Structured Unsupervised Classification
Author: Juan Albarracín, Javier Fuster García, Elíes Manjón Herrera, José Vicente Robles Viejo, Montserrat Aparici, F. Marti-Bonmati, L. García Gómez, Juan Miguel
UPV Unit: Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Issued date:
Abstract:
Automatic brain tumour segmentation has become a key component for the future of brain tumour treatment. Currently, most of brain tumour segmentation approaches arise from the supervised learning standpoint, which requires ...[+]
Subjects: Magnetic Resonance Imaging , Unsupervised Classification , Structured Prediction , Imaging techniques , Statistical Distributions
Copyrigths: Reconocimiento (by)
Source:
PLoS ONE. (issn: 1932-6203 )
DOI: 10.1371/journal.pone.0125143
Publisher:
Public Library of Science
Publisher version: http://dx.doi.org/10.1371/journal.pone.0125143
Project ID:
info:eu-repo/grantAgreement/MINECO//RD12%2F0036%2F0020/ES/Cáncer/
info:eu-repo/grantAgreement/MINECO//TIN2013-43457-R/ES/CARACTERIZACION DE FIRMAS BIOLOGICAS DE GLIOBLASTOMAS MEDIANTE MODELOS NO-SUPERVISADOS DE PREDICCION ESTRUCTURADA BASADOS EN BIOMARCADORES DE IMAGEN/
info:eu-repo/grantAgreement/UPV//IISLaFe%2FCON2014001/
info:eu-repo/grantAgreement/UPV//IISLaFe%2FCON2014002/
info:eu-repo/grantAgreement/ESF/PTQ-1205693/EU
Thanks:
EFG was supported by Programa Torres Quevedo, Ministerio de Educacion y Ciencia, co-funded by the European Social Fund (PTQ-1205693). EFG, JMGG, and JVM were supported by Red Tematica de Investigacion Cooperativa en Cancer, ...[+]
Type: Artículo

References

Wen, P. Y., Macdonald, D. R., Reardon, D. A., Cloughesy, T. F., Sorensen, A. G., Galanis, E., … Chang, S. M. (2010). Updated Response Assessment Criteria for High-Grade Gliomas: Response Assessment in Neuro-Oncology Working Group. Journal of Clinical Oncology, 28(11), 1963-1972. doi:10.1200/jco.2009.26.3541

Bauer, S., Wiest, R., Nolte, L.-P., & Reyes, M. (2013). A survey of MRI-based medical image analysis for brain tumor studies. Physics in Medicine and Biology, 58(13), R97-R129. doi:10.1088/0031-9155/58/13/r97

Dolecek, T. A., Propp, J. M., Stroup, N. E., & Kruchko, C. (2012). CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2005-2009. Neuro-Oncology, 14(suppl 5), v1-v49. doi:10.1093/neuonc/nos218 [+]
Wen, P. Y., Macdonald, D. R., Reardon, D. A., Cloughesy, T. F., Sorensen, A. G., Galanis, E., … Chang, S. M. (2010). Updated Response Assessment Criteria for High-Grade Gliomas: Response Assessment in Neuro-Oncology Working Group. Journal of Clinical Oncology, 28(11), 1963-1972. doi:10.1200/jco.2009.26.3541

Bauer, S., Wiest, R., Nolte, L.-P., & Reyes, M. (2013). A survey of MRI-based medical image analysis for brain tumor studies. Physics in Medicine and Biology, 58(13), R97-R129. doi:10.1088/0031-9155/58/13/r97

Dolecek, T. A., Propp, J. M., Stroup, N. E., & Kruchko, C. (2012). CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2005-2009. Neuro-Oncology, 14(suppl 5), v1-v49. doi:10.1093/neuonc/nos218

Gordillo, N., Montseny, E., & Sobrevilla, P. (2013). State of the art survey on MRI brain tumor segmentation. Magnetic Resonance Imaging, 31(8), 1426-1438. doi:10.1016/j.mri.2013.05.002

Verma, R., Zacharaki, E. I., Ou, Y., Cai, H., Chawla, S., Lee, S.-K., … Davatzikos, C. (2008). Multiparametric Tissue Characterization of Brain Neoplasms and Their Recurrence Using Pattern Classification of MR Images. Academic Radiology, 15(8), 966-977. doi:10.1016/j.acra.2008.01.029

Jensen, T. R., & Schmainda, K. M. (2009). Computer-aided detection of brain tumor invasion using multiparametric MRI. Journal of Magnetic Resonance Imaging, 30(3), 481-489. doi:10.1002/jmri.21878

Breiman, L. (2001). Machine Learning, 45(1), 5-32. doi:10.1023/a:1010933404324

Wagstaff KL. Intelligent Clustering with instance-level constraints. PhD Thesis, Cornell University. 2002.

Fletcher-Heath, L. M., Hall, L. O., Goldgof, D. B., & Murtagh, F. R. (2001). Automatic segmentation of non-enhancing brain tumors in magnetic resonance images. Artificial Intelligence in Medicine, 21(1-3), 43-63. doi:10.1016/s0933-3657(00)00073-7

Nie, J., Xue, Z., Liu, T., Young, G. S., Setayesh, K., Guo, L., & Wong, S. T. C. (2009). Automated brain tumor segmentation using spatial accuracy-weighted hidden Markov Random Field. Computerized Medical Imaging and Graphics, 33(6), 431-441. doi:10.1016/j.compmedimag.2009.04.006

Zhu, Y., Young, G. S., Xue, Z., Huang, R. Y., You, H., Setayesh, K., … Wong, S. T. (2012). Semi-Automatic Segmentation Software for Quantitative Clinical Brain Glioblastoma Evaluation. Academic Radiology, 19(8), 977-985. doi:10.1016/j.acra.2012.03.026

Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging, 20(1), 45-57. doi:10.1109/42.906424

Vijayakumar, C., Damayanti, G., Pant, R., & Sreedhar, C. M. (2007). Segmentation and grading of brain tumors on apparent diffusion coefficient images using self-organizing maps. Computerized Medical Imaging and Graphics, 31(7), 473-484. doi:10.1016/j.compmedimag.2007.04.004

Prastawa, M., Bullitt, E., Moon, N., Van Leemput, K., & Gerig, G. (2003). Automatic brain tumor segmentation by subject specific modification of atlas priors1. Academic Radiology, 10(12), 1341-1348. doi:10.1016/s1076-6332(03)00506-3

Gudbjartsson, H., & Patz, S. (1995). The rician distribution of noisy mri data. Magnetic Resonance in Medicine, 34(6), 910-914. doi:10.1002/mrm.1910340618

Buades, A., Coll, B., & Morel, J. M. (2005). A Review of Image Denoising Algorithms, with a New One. Multiscale Modeling & Simulation, 4(2), 490-530. doi:10.1137/040616024

Manjón, J. V., Coupé, P., Martí-Bonmatí, L., Collins, D. L., & Robles, M. (2009). Adaptive non-local means denoising of MR images with spatially varying noise levels. Journal of Magnetic Resonance Imaging, 31(1), 192-203. doi:10.1002/jmri.22003

Sled, J. G., Zijdenbos, A. P., & Evans, A. C. (1998). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging, 17(1), 87-97. doi:10.1109/42.668698

Tustison, N. J., Avants, B. B., Cook, P. A., Yuanjie Zheng, Egan, A., Yushkevich, P. A., & Gee, J. C. (2010). N4ITK: Improved N3 Bias Correction. IEEE Transactions on Medical Imaging, 29(6), 1310-1320. doi:10.1109/tmi.2010.2046908

Manjón, J. V., Coupé, P., Buades, A., Collins, D. L., & Robles, M. (2010). MRI Superresolution Using Self-Similarity and Image Priors. International Journal of Biomedical Imaging, 2010, 1-11. doi:10.1155/2010/425891

Rousseau, F. (2010). A non-local approach for image super-resolution using intermodality priors☆. Medical Image Analysis, 14(4), 594-605. doi:10.1016/j.media.2010.04.005

Protter, M., Elad, M., Takeda, H., & Milanfar, P. (2009). Generalizing the Nonlocal-Means to Super-Resolution Reconstruction. IEEE Transactions on Image Processing, 18(1), 36-51. doi:10.1109/tip.2008.2008067

Manjón, J. V., Coupé, P., Buades, A., Fonov, V., Louis Collins, D., & Robles, M. (2010). Non-local MRI upsampling. Medical Image Analysis, 14(6), 784-792. doi:10.1016/j.media.2010.05.010

Kassner, A., & Thornhill, R. E. (2010). Texture Analysis: A Review of Neurologic MR Imaging Applications. American Journal of Neuroradiology, 31(5), 809-816. doi:10.3174/ajnr.a2061

Ahmed, S., Iftekharuddin, K. M., & Vossough, A. (2011). Efficacy of Texture, Shape, and Intensity Feature Fusion for Posterior-Fossa Tumor Segmentation in MRI. IEEE Transactions on Information Technology in Biomedicine, 15(2), 206-213. doi:10.1109/titb.2011.2104376

Lloyd, S. (1982). Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2), 129-137. doi:10.1109/tit.1982.1056489

Dunn, J. C. (1973). A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters. Journal of Cybernetics, 3(3), 32-57. doi:10.1080/01969727308546046

Bezdek, J. C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms. doi:10.1007/978-1-4757-0450-1

Hammersley, JM, Clifford, P. Markov fields on finite graphs and lattices. 1971.

Komodakis, N., & Tziritas, G. (2007). Approximate Labeling via Graph Cuts Based on Linear Programming. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(8), 1436-1453. doi:10.1109/tpami.2007.1061

Komodakis, N., Tziritas, G., & Paragios, N. (2008). Performance vs computational efficiency for optimizing single and dynamic MRFs: Setting the state of the art with primal-dual strategies. Computer Vision and Image Understanding, 112(1), 14-29. doi:10.1016/j.cviu.2008.06.007

Fonov, V., Evans, A. C., Botteron, K., Almli, C. R., McKinstry, R. C., & Collins, D. L. (2011). Unbiased average age-appropriate atlases for pediatric studies. NeuroImage, 54(1), 313-327. doi:10.1016/j.neuroimage.2010.07.033

Fonov, V., Evans, A., McKinstry, R., Almli, C., & Collins, D. (2009). Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage, 47, S102. doi:10.1016/s1053-8119(09)70884-5

Klein, A., Andersson, J., Ardekani, B. A., Ashburner, J., Avants, B., Chiang, M.-C., … Parsey, R. V. (2009). Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage, 46(3), 786-802. doi:10.1016/j.neuroimage.2008.12.037

AVANTS, B., EPSTEIN, C., GROSSMAN, M., & GEE, J. (2008). Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis, 12(1), 26-41. doi:10.1016/j.media.2007.06.004

Saez C, Robles M, Garcia-Gomez JM. Stability metrics for multi-source biomedical data based on simplicial projections from probability distribution distances. Statistical Methods in Medical Research 2014; In press.

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record