Mostrar el registro sencillo del ítem
dc.contributor.author | Juan Albarracín, Javier | es_ES |
dc.contributor.author | Fuster García, Elíes | es_ES |
dc.contributor.author | Manjón Herrera, José Vicente | es_ES |
dc.contributor.author | Robles Viejo, Montserrat | es_ES |
dc.contributor.author | Aparici, F. | es_ES |
dc.contributor.author | Marti-Bonmati, L. | es_ES |
dc.contributor.author | García Gómez, Juan Miguel | es_ES |
dc.date.accessioned | 2016-05-17T11:04:00Z | |
dc.date.available | 2016-05-17T11:04:00Z | |
dc.date.issued | 2015-05-15 | |
dc.identifier.issn | 1932-6203 | |
dc.identifier.uri | http://hdl.handle.net/10251/64235 | |
dc.description.abstract | Automatic brain tumour segmentation has become a key component for the future of brain tumour treatment. Currently, most of brain tumour segmentation approaches arise from the supervised learning standpoint, which requires a labelled training dataset from which to infer the models of the classes. The performance of these models is directly determined by the size and quality of the training corpus, whose retrieval becomes a tedious and time-consuming task. On the other hand, unsupervised approaches avoid these limitations but often do not reach comparable results than the supervised methods. In this sense, we propose an automated unsupervised method for brain tumour segmentation based on anatomical Magnetic Resonance (MR) images. Four unsupervised classification algorithms, grouped by their structured or non-structured condition, were evaluated within our pipeline. Considering the non-structured algorithms, we evaluated K-means, Fuzzy K-means and Gaussian Mixture Model (GMM), whereas as structured classification algorithms we evaluated Gaussian Hidden Markov Random Field (GHMRF). An automated postprocess based on a statistical approach supported by tissue probability maps is proposed to automatically identify the tumour classes after the segmentations. We evaluated our brain tumour segmentation method with the public BRAin Tumor Segmentation (BRATS) 2013 Test and Leaderboard datasets. Our approach based on the GMM model improves the results obtained by most of the supervised methods evaluated with the Leaderboard set and reaches the second position in the ranking. Our variant based on the GHMRF achieves the first position in the Test ranking of the unsupervised approaches and the seventh position in the general Test ranking, which confirms the method as a viable alternative for brain tumour segmentation. | es_ES |
dc.description.sponsorship | EFG was supported by Programa Torres Quevedo, Ministerio de Educacion y Ciencia, co-funded by the European Social Fund (PTQ-1205693). EFG, JMGG, and JVM were supported by Red Tematica de Investigacion Cooperativa en Cancer, (RTICC) 2013-2016 (RD12/0036/0020). JMGG was supported by Project TIN2013-43457-R: Caracterizacion de firmas biologicas de glioblastomas mediante modelos no-supervisados de prediccion estructurada basados en biomarcadores de imagen, co-funded by the Ministerio de Economia y Competitividad of Spain; CON2014001 UPV-IISLaFe: Unsupervised glioblastoma tumor components segmentation based on perfusion multiparametric MRI and spatio/temporal constraints; and CON2014002 UPV-IISLaFe: Empleo de segmentacion no supervisada multiparametrica basada en perfusion RM para la caracterizacion del edema peritumoral de gliomas y metastasis cerebrales unicas, funded by Instituto de Investigacion Sanitaria H. Universitario y Politecnico La Fe. This work was partially supported by the Instituto de Aplicaciones de las Tecnologias de la Informacion y las Comunicaciones Avanzadas (ITACA). Veratech for Health S.L. provided support in the form of salaries for author EF-G, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific roles of this author is articulated in the "author contributions" section. This does not alter the authors' adherence to PLOS ONE policies on sharing data and materials. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Public Library of Science | es_ES |
dc.relation.ispartof | PLoS ONE | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Magnetic Resonance Imaging | es_ES |
dc.subject | Unsupervised Classification | es_ES |
dc.subject | Structured Prediction | es_ES |
dc.subject | Imaging techniques | es_ES |
dc.subject | Statistical Distributions | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Automated Glioblastoma Segmentation Based on a Multiparametric Structured Unsupervised Classification | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1371/journal.pone.0125143 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RD12%2F0036%2F0020/ES/Cáncer/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ESF/PTQ-1205693/EU | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TIN2013-43457-R/ES/CARACTERIZACION DE FIRMAS BIOLOGICAS DE GLIOBLASTOMAS MEDIANTE MODELOS NO-SUPERVISADOS DE PREDICCION ESTRUCTURADA BASADOS EN BIOMARCADORES DE IMAGEN/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//IISLaFe%2FCON2014001/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//IISLaFe%2FCON2014002/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Aplicaciones de las Tecnologías de la Información - Institut Universitari d'Aplicacions de les Tecnologies de la Informació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Juan Albarracín, J.; Fuster García, E.; Manjón Herrera, JV.; Robles Viejo, M.; Aparici, F.; Marti-Bonmati, L.; García Gómez, JM. (2015). Automated Glioblastoma Segmentation Based on a Multiparametric Structured Unsupervised Classification. PLoS ONE. 10(5):1-20. https://doi.org/10.1371/journal.pone.0125143 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1371/journal.pone.0125143 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 20 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.senia | 285758 | es_ES |
dc.identifier.pmid | 25978453 | en_EN |
dc.identifier.pmcid | PMC4433123 | |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.contributor.funder | Institute of Information and Communication Technologies | es_ES |
dc.contributor.funder | European Social Fund | |
dc.description.references | Wen, P. Y., Macdonald, D. R., Reardon, D. A., Cloughesy, T. F., Sorensen, A. G., Galanis, E., … Chang, S. M. (2010). Updated Response Assessment Criteria for High-Grade Gliomas: Response Assessment in Neuro-Oncology Working Group. Journal of Clinical Oncology, 28(11), 1963-1972. doi:10.1200/jco.2009.26.3541 | es_ES |
dc.description.references | Bauer, S., Wiest, R., Nolte, L.-P., & Reyes, M. (2013). A survey of MRI-based medical image analysis for brain tumor studies. Physics in Medicine and Biology, 58(13), R97-R129. doi:10.1088/0031-9155/58/13/r97 | es_ES |
dc.description.references | Dolecek, T. A., Propp, J. M., Stroup, N. E., & Kruchko, C. (2012). CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2005-2009. Neuro-Oncology, 14(suppl 5), v1-v49. doi:10.1093/neuonc/nos218 | es_ES |
dc.description.references | Gordillo, N., Montseny, E., & Sobrevilla, P. (2013). State of the art survey on MRI brain tumor segmentation. Magnetic Resonance Imaging, 31(8), 1426-1438. doi:10.1016/j.mri.2013.05.002 | es_ES |
dc.description.references | Verma, R., Zacharaki, E. I., Ou, Y., Cai, H., Chawla, S., Lee, S.-K., … Davatzikos, C. (2008). Multiparametric Tissue Characterization of Brain Neoplasms and Their Recurrence Using Pattern Classification of MR Images. Academic Radiology, 15(8), 966-977. doi:10.1016/j.acra.2008.01.029 | es_ES |
dc.description.references | Jensen, T. R., & Schmainda, K. M. (2009). Computer-aided detection of brain tumor invasion using multiparametric MRI. Journal of Magnetic Resonance Imaging, 30(3), 481-489. doi:10.1002/jmri.21878 | es_ES |
dc.description.references | Breiman, L. (2001). Machine Learning, 45(1), 5-32. doi:10.1023/a:1010933404324 | es_ES |
dc.description.references | Wagstaff KL. Intelligent Clustering with instance-level constraints. PhD Thesis, Cornell University. 2002. | es_ES |
dc.description.references | Fletcher-Heath, L. M., Hall, L. O., Goldgof, D. B., & Murtagh, F. R. (2001). Automatic segmentation of non-enhancing brain tumors in magnetic resonance images. Artificial Intelligence in Medicine, 21(1-3), 43-63. doi:10.1016/s0933-3657(00)00073-7 | es_ES |
dc.description.references | Nie, J., Xue, Z., Liu, T., Young, G. S., Setayesh, K., Guo, L., & Wong, S. T. C. (2009). Automated brain tumor segmentation using spatial accuracy-weighted hidden Markov Random Field. Computerized Medical Imaging and Graphics, 33(6), 431-441. doi:10.1016/j.compmedimag.2009.04.006 | es_ES |
dc.description.references | Zhu, Y., Young, G. S., Xue, Z., Huang, R. Y., You, H., Setayesh, K., … Wong, S. T. (2012). Semi-Automatic Segmentation Software for Quantitative Clinical Brain Glioblastoma Evaluation. Academic Radiology, 19(8), 977-985. doi:10.1016/j.acra.2012.03.026 | es_ES |
dc.description.references | Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging, 20(1), 45-57. doi:10.1109/42.906424 | es_ES |
dc.description.references | Vijayakumar, C., Damayanti, G., Pant, R., & Sreedhar, C. M. (2007). Segmentation and grading of brain tumors on apparent diffusion coefficient images using self-organizing maps. Computerized Medical Imaging and Graphics, 31(7), 473-484. doi:10.1016/j.compmedimag.2007.04.004 | es_ES |
dc.description.references | Prastawa, M., Bullitt, E., Moon, N., Van Leemput, K., & Gerig, G. (2003). Automatic brain tumor segmentation by subject specific modification of atlas priors1. Academic Radiology, 10(12), 1341-1348. doi:10.1016/s1076-6332(03)00506-3 | es_ES |
dc.description.references | Gudbjartsson, H., & Patz, S. (1995). The rician distribution of noisy mri data. Magnetic Resonance in Medicine, 34(6), 910-914. doi:10.1002/mrm.1910340618 | es_ES |
dc.description.references | Buades, A., Coll, B., & Morel, J. M. (2005). A Review of Image Denoising Algorithms, with a New One. Multiscale Modeling & Simulation, 4(2), 490-530. doi:10.1137/040616024 | es_ES |
dc.description.references | Manjón, J. V., Coupé, P., Martí-Bonmatí, L., Collins, D. L., & Robles, M. (2009). Adaptive non-local means denoising of MR images with spatially varying noise levels. Journal of Magnetic Resonance Imaging, 31(1), 192-203. doi:10.1002/jmri.22003 | es_ES |
dc.description.references | Sled, J. G., Zijdenbos, A. P., & Evans, A. C. (1998). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging, 17(1), 87-97. doi:10.1109/42.668698 | es_ES |
dc.description.references | Tustison, N. J., Avants, B. B., Cook, P. A., Yuanjie Zheng, Egan, A., Yushkevich, P. A., & Gee, J. C. (2010). N4ITK: Improved N3 Bias Correction. IEEE Transactions on Medical Imaging, 29(6), 1310-1320. doi:10.1109/tmi.2010.2046908 | es_ES |
dc.description.references | Manjón, J. V., Coupé, P., Buades, A., Collins, D. L., & Robles, M. (2010). MRI Superresolution Using Self-Similarity and Image Priors. International Journal of Biomedical Imaging, 2010, 1-11. doi:10.1155/2010/425891 | es_ES |
dc.description.references | Rousseau, F. (2010). A non-local approach for image super-resolution using intermodality priors☆. Medical Image Analysis, 14(4), 594-605. doi:10.1016/j.media.2010.04.005 | es_ES |
dc.description.references | Protter, M., Elad, M., Takeda, H., & Milanfar, P. (2009). Generalizing the Nonlocal-Means to Super-Resolution Reconstruction. IEEE Transactions on Image Processing, 18(1), 36-51. doi:10.1109/tip.2008.2008067 | es_ES |
dc.description.references | Manjón, J. V., Coupé, P., Buades, A., Fonov, V., Louis Collins, D., & Robles, M. (2010). Non-local MRI upsampling. Medical Image Analysis, 14(6), 784-792. doi:10.1016/j.media.2010.05.010 | es_ES |
dc.description.references | Kassner, A., & Thornhill, R. E. (2010). Texture Analysis: A Review of Neurologic MR Imaging Applications. American Journal of Neuroradiology, 31(5), 809-816. doi:10.3174/ajnr.a2061 | es_ES |
dc.description.references | Ahmed, S., Iftekharuddin, K. M., & Vossough, A. (2011). Efficacy of Texture, Shape, and Intensity Feature Fusion for Posterior-Fossa Tumor Segmentation in MRI. IEEE Transactions on Information Technology in Biomedicine, 15(2), 206-213. doi:10.1109/titb.2011.2104376 | es_ES |
dc.description.references | Lloyd, S. (1982). Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2), 129-137. doi:10.1109/tit.1982.1056489 | es_ES |
dc.description.references | Dunn, J. C. (1973). A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters. Journal of Cybernetics, 3(3), 32-57. doi:10.1080/01969727308546046 | es_ES |
dc.description.references | Bezdek, J. C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms. doi:10.1007/978-1-4757-0450-1 | es_ES |
dc.description.references | Hammersley, JM, Clifford, P. Markov fields on finite graphs and lattices. 1971. | es_ES |
dc.description.references | Komodakis, N., & Tziritas, G. (2007). Approximate Labeling via Graph Cuts Based on Linear Programming. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(8), 1436-1453. doi:10.1109/tpami.2007.1061 | es_ES |
dc.description.references | Komodakis, N., Tziritas, G., & Paragios, N. (2008). Performance vs computational efficiency for optimizing single and dynamic MRFs: Setting the state of the art with primal-dual strategies. Computer Vision and Image Understanding, 112(1), 14-29. doi:10.1016/j.cviu.2008.06.007 | es_ES |
dc.description.references | Fonov, V., Evans, A. C., Botteron, K., Almli, C. R., McKinstry, R. C., & Collins, D. L. (2011). Unbiased average age-appropriate atlases for pediatric studies. NeuroImage, 54(1), 313-327. doi:10.1016/j.neuroimage.2010.07.033 | es_ES |
dc.description.references | Fonov, V., Evans, A., McKinstry, R., Almli, C., & Collins, D. (2009). Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage, 47, S102. doi:10.1016/s1053-8119(09)70884-5 | es_ES |
dc.description.references | Klein, A., Andersson, J., Ardekani, B. A., Ashburner, J., Avants, B., Chiang, M.-C., … Parsey, R. V. (2009). Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage, 46(3), 786-802. doi:10.1016/j.neuroimage.2008.12.037 | es_ES |
dc.description.references | AVANTS, B., EPSTEIN, C., GROSSMAN, M., & GEE, J. (2008). Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis, 12(1), 26-41. doi:10.1016/j.media.2007.06.004 | es_ES |
dc.description.references | Saez C, Robles M, Garcia-Gomez JM. Stability metrics for multi-source biomedical data based on simplicial projections from probability distribution distances. Statistical Methods in Medical Research 2014; In press. | es_ES |