- -

Role of atrial tissue remodeling on rotor dynamics an in vitro study

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Role of atrial tissue remodeling on rotor dynamics an in vitro study

Show full item record

Climent, A.; Guillem Sánchez, MS.; Fuentes, L.; Lee, P.; Bollensdorff, C.; Fernandez-Santos, M.; Suarez-Sancho, S.... (2015). Role of atrial tissue remodeling on rotor dynamics an in vitro study. AJP - Heart and Circulatory Physiology. 309(11):H1964-H1973. doi:10.1152/ajpheart.00055.2015

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/64249

Files in this item

Item Metadata

Title: Role of atrial tissue remodeling on rotor dynamics an in vitro study
Author: Climent, A.M. Guillem Sánchez, María Salud Fuentes, L. Lee, P. Bollensdorff, C. Fernandez-Santos, M.E. Suarez-Sancho, S. Sanz-Ruiz, R. Sanchez, P.L. Atienza, F. Fernandez-Aviles, F.
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Issued date:
Abstract:
The objective of this article is to present an in vitro model of atrial cardiac tissue that could serve to study the mechanisms of remodeling related to atrial fibrillation (AF). We analyze the modification on gene expression ...[+]
Subjects: Atrial Fibrillation , Optical mapping
Copyrigths: Reserva de todos los derechos
Source:
AJP - Heart and Circulatory Physiology. (issn: 0363-6135 )
DOI: 10.1152/ajpheart.00055.2015
Publisher:
American Physiological Society
Publisher version: http://dx.doi.org/10.1152/ajpheart.00055.2015
Project ID:
info:eu-repo/grantAgreement/MICINN//PLE2009-0152/ES/INVESTIGACION TRASLACIONAL PARA EL DESARROLLO DE UN BANCO DE MATRICES DE ORGANOS Y DE ORGANOS Y TEJIDOS BIOARTIFICIALES AUTOLOGOS PARA TRASPLANTE/
info:eu-repo/grantAgreement/MINECO//TEC2013-50391-EXP/ES/DESARROLLO DE COMPUTADORES LOGICOS BIOLOGICOS BASADOS EN COMUNICACION IONICA ENTRE CELULAS CARDIACAS EXCITABLES Y NO EXCITABLES./
info:eu-repo/grantAgreement/MINECO//PI13/01882/ES/Estudio preclínico de la implantación de parches de tejido cardiaco bioartificial electromecánicamente entrenados en un modelo de infarto de miocardio porcino/
info:eu-repo/grantAgreement/MINECO//PI13/00903/ES/EEstudio preclínico de la implantación de parches de tejido cardiaco bioartificial electromecánicamente entrenados en un modelo de infarto de miocardio porcino. Desarrollo de bioreactores con estimulación electromecánica/
Thanks:
This work was supported in part by grants from the Spanish Ministry of Science and Innovation (PLE2009-0152), the Instituto de Salud Carlos III (Ministry of Economy and Competitiveness, Spain: PI13-01882, PI13-00903, and ...[+]
Type: Artículo

References

Allessie, M. (2002). Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovascular Research, 54(2), 230-246. doi:10.1016/s0008-6363(02)00258-4

Allessie, M. A., de Groot, N. M. S., Houben, R. P. M., Schotten, U., Boersma, E., Smeets, J. L., & Crijns, H. J. (2010). Electropathological Substrate of Long-Standing Persistent Atrial Fibrillation in Patients With Structural Heart Disease. Circulation: Arrhythmia and Electrophysiology, 3(6), 606-615. doi:10.1161/circep.109.910125

Atienza, F., Almendral, J., Jalife, J., Zlochiver, S., Ploutz-Snyder, R., Torrecilla, E. G., … Berenfeld, O. (2009). Real-time dominant frequency mapping and ablation of dominant frequency sites in atrial fibrillation with left-to-right frequency gradients predicts long-term maintenance of sinus rhythm. Heart Rhythm, 6(1), 33-40. doi:10.1016/j.hrthm.2008.10.024 [+]
Allessie, M. (2002). Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovascular Research, 54(2), 230-246. doi:10.1016/s0008-6363(02)00258-4

Allessie, M. A., de Groot, N. M. S., Houben, R. P. M., Schotten, U., Boersma, E., Smeets, J. L., & Crijns, H. J. (2010). Electropathological Substrate of Long-Standing Persistent Atrial Fibrillation in Patients With Structural Heart Disease. Circulation: Arrhythmia and Electrophysiology, 3(6), 606-615. doi:10.1161/circep.109.910125

Atienza, F., Almendral, J., Jalife, J., Zlochiver, S., Ploutz-Snyder, R., Torrecilla, E. G., … Berenfeld, O. (2009). Real-time dominant frequency mapping and ablation of dominant frequency sites in atrial fibrillation with left-to-right frequency gradients predicts long-term maintenance of sinus rhythm. Heart Rhythm, 6(1), 33-40. doi:10.1016/j.hrthm.2008.10.024

Atienza, F., Almendral, J., Ormaetxe, J. M., Moya, Á., Martínez-Alday, J. D., Hernández-Madrid, A., … Jalife, J. (2014). Comparison of Radiofrequency Catheter Ablation of Drivers and Circumferential Pulmonary Vein Isolation in Atrial Fibrillation. Journal of the American College of Cardiology, 64(23), 2455-2467. doi:10.1016/j.jacc.2014.09.053

Bikou, O., Thomas, D., Trappe, K., Lugenbiel, P., Kelemen, K., Koch, M., … Bauer, A. (2011). Connexin 43 gene therapy prevents persistent atrial fibrillation in a porcine model. Cardiovascular Research, 92(2), 218-225. doi:10.1093/cvr/cvr209

Bollmann, A., Sonne, K., Esperer, H.-D., Toepffer, I., & Klein, H. U. (2002). Patients with Persistent Atrial Fibrillation Taking Oral Verapamil Exhibit a Lower Atrial Frequency on the ECG. Annals of Noninvasive Electrocardiology, 7(2), 92-97. doi:10.1111/j.1542-474x.2002.tb00148.x

BRUNDEL, B. (2004). Calpain inhibition prevents pacing-induced cellular remodeling in a HL-1 myocyte model for atrial fibrillation. Cardiovascular Research, 62(3), 521-528. doi:10.1016/j.cardiores.2004.02.007

Calkins, H., Kuck, K. H., Cappato, R., Brugada, J., Camm, A. J., Chen, S.-A., … Wilber, D. (2012). 2012 HRS/EHRA/ECAS Expert Consensus Statement on Catheter and Surgical Ablation of Atrial Fibrillation: Recommendations for Patient Selection, Procedural Techniques, Patient Management and Follow-up, Definitions, Endpoints, and Research Trial Design. Heart Rhythm, 9(4), 632-696.e21. doi:10.1016/j.hrthm.2011.12.016

Claycomb, W. C., Lanson, N. A., Stallworth, B. S., Egeland, D. B., Delcarpio, J. B., Bahinski, A., & Izzo, N. J. (1998). HL-1 cells: A cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proceedings of the National Academy of Sciences, 95(6), 2979-2984. doi:10.1073/pnas.95.6.2979

Filgueiras-Rama, D., Price, N. F., Martins, R. P., Yamazaki, M., Avula, U. M. R., Kaur, K., … Berenfeld, O. (2012). Long-Term Frequency Gradients During Persistent Atrial Fibrillation in Sheep Are Associated With Stable Sources in the Left Atrium. Circulation: Arrhythmia and Electrophysiology, 5(6), 1160-1167. doi:10.1161/circep.111.969519

Haïssaguerre, M., Jaïs, P., Shah, D. C., Takahashi, A., Hocini, M., Quiniou, G., … Clémenty, J. (1998). Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating in the Pulmonary Veins. New England Journal of Medicine, 339(10), 659-666. doi:10.1056/nejm199809033391003

Haralick, R. M., Shanmugam, K., & Dinstein, I. (1973). Textural Features for Image Classification. IEEE Transactions on Systems, Man, and Cybernetics, SMC-3(6), 610-621. doi:10.1109/tsmc.1973.4309314

Jalife, J. (2010). Deja vu in the theories of atrial fibrillation dynamics. Cardiovascular Research, 89(4), 766-775. doi:10.1093/cvr/cvq364

Koivumäki, J. T., Seemann, G., Maleckar, M. M., & Tavi, P. (2014). In Silico Screening of the Key Cellular Remodeling Targets in Chronic Atrial Fibrillation. PLoS Computational Biology, 10(5), e1003620. doi:10.1371/journal.pcbi.1003620

Lee, P., Klos, M., Bollensdorff, C., Hou, L., Ewart, P., Kamp, T. J., … Herron, T. J. (2012). Simultaneous Voltage and Calcium Mapping of Genetically Purified Human Induced Pluripotent Stem Cell–Derived Cardiac Myocyte Monolayers. Circulation Research, 110(12), 1556-1563. doi:10.1161/circresaha.111.262535

Lieu, D. K., Fu, J.-D., Chiamvimonvat, N., Tung, K. C., McNerney, G. P., Huser, T., … Li, R. A. (2013). Mechanism-Based Facilitated Maturation of Human Pluripotent Stem Cell–Derived Cardiomyocytes. Circulation: Arrhythmia and Electrophysiology, 6(1), 191-201. doi:10.1161/circep.111.973420

Liu, X., Shi, H., Tan, H., Wang, X., Zhou, L., & Gu, J. (2009). Decreased Connexin 43 and Increased Fibrosis in Atrial Regions Susceptible to Complex Fractionated Atrial Electrograms. Cardiology, 114(1), 22-29. doi:10.1159/000210398

Mansour, M., Mandapati, R., Berenfeld, O., Chen, J., Samie, F. H., & Jalife, J. (2001). Left-to-Right Gradient of Atrial Frequencies During Acute Atrial Fibrillation in the Isolated Sheep Heart. Circulation, 103(21), 2631-2636. doi:10.1161/01.cir.103.21.2631

Martins, R. P., Kaur, K., Hwang, E., Ramirez, R. J., Willis, B. C., Filgueiras-Rama, D., … Jalife, J. (2014). Dominant Frequency Increase Rate Predicts Transition from Paroxysmal to Long-Term Persistent Atrial Fibrillation. Circulation, 129(14), 1472-1482. doi:10.1161/circulationaha.113.004742

McDowell, K. S., Vadakkumpadan, F., Blake, R., Blauer, J., Plank, G., MacLeod, R. S., & Trayanova, N. A. (2013). Mechanistic Inquiry into the Role of Tissue Remodeling in Fibrotic Lesions in Human Atrial Fibrillation. Biophysical Journal, 104(12), 2764-2773. doi:10.1016/j.bpj.2013.05.025

Narayan, S. M., Krummen, D. E., Shivkumar, K., Clopton, P., Rappel, W.-J., & Miller, J. M. (2012). Treatment of Atrial Fibrillation by the Ablation of Localized Sources. Journal of the American College of Cardiology, 60(7), 628-636. doi:10.1016/j.jacc.2012.05.022

Noguchi, K., Masumiya, H., Takahashi, K., Kaneko, K., Higuchi, S., Tanaka, H., & Shigenobu, K. (1997). Comparative effects of gallopamil and verapamil on the mechanical and electrophysiological parameters of isolated guinea-pig myocardium. Canadian Journal of Physiology and Pharmacology, 75(12), 1316-1321. doi:10.1139/y97-161

Pandit, S. V., Berenfeld, O., Anumonwo, J. M. B., Zaritski, R. M., Kneller, J., Nattel, S., & Jalife, J. (2005). Ionic Determinants of Functional Reentry in a 2-D Model of Human Atrial Cells During Simulated Chronic Atrial Fibrillation. Biophysical Journal, 88(6), 3806-3821. doi:10.1529/biophysj.105.060459

Pandit, S. V., & Jalife, J. (2013). Rotors and the Dynamics of Cardiac Fibrillation. Circulation Research, 112(5), 849-862. doi:10.1161/circresaha.111.300158

Riccio, M. L., Koller, M. L., & Gilmour, R. F. (1999). Electrical Restitution and Spatiotemporal Organization During Ventricular Fibrillation. Circulation Research, 84(8), 955-963. doi:10.1161/01.res.84.8.955

Samie, F. H., Mandapati, R., Gray, R. A., Watanabe, Y., Zuur, C., Beaumont, J., & Jalife, J. (2000). A Mechanism of Transition From Ventricular Fibrillation to Tachycardia. Circulation Research, 86(6), 684-691. doi:10.1161/01.res.86.6.684

Samie, F. H., Berenfeld, O., Anumonwo, J., Mironov, S. F., Udassi, S., Beaumont, J., … Jalife, J. (2001). Rectification of the Background Potassium Current. Circulation Research, 89(12), 1216-1223. doi:10.1161/hh2401.100818

Smith, A. W., Segar, C. E., Nguyen, P. K., MacEwan, M. R., Efimov, I. R., & Elbert, D. L. (2012). Long-term culture of HL-1 cardiomyocytes in modular poly(ethylene glycol) microsphere-based scaffolds crosslinked in the phase-separated state. Acta Biomaterialia, 8(1), 31-40. doi:10.1016/j.actbio.2011.08.021

Tsai, C.-T., Chiang, F.-T., Chen, W.-P., Hwang, J.-J., Tseng, C.-D., Wu, C.-K., … Lin, J.-L. (2011). Angiotensin II induces complex fractionated electrogram in a cultured atrial myocyte monolayer mediated by calcium and sodium-calcium exchanger. Cell Calcium, 49(1), 1-11. doi:10.1016/j.ceca.2010.10.005

Tsai, C.-T., Chiang, F.-T., Tseng, C.-D., Yu, C.-C., Wang, Y.-C., Lai, L.-P., … Lin, J.-L. (2011). Mechanical Stretch of Atrial Myocyte Monolayer Decreases Sarcoplasmic Reticulum Calcium Adenosine Triphosphatase Expression and Increases Susceptibility to Repolarization Alternans. Journal of the American College of Cardiology, 58(20), 2106-2115. doi:10.1016/j.jacc.2011.07.039

Tuomi, J. M., Tyml, K., & Jones, D. L. (2011). Atrial tachycardia/fibrillation in the connexin 43 G60S mutant (Oculodentodigital dysplasia) mouse. American Journal of Physiology-Heart and Circulatory Physiology, 300(4), H1402-H1411. doi:10.1152/ajpheart.01094.2010

White, S. M., Constantin, P. E., & Claycomb, W. C. (2004). Cardiac physiology at the cellular level: use of cultured HL-1 cardiomyocytes for studies of cardiac muscle cell structure and function. American Journal of Physiology-Heart and Circulatory Physiology, 286(3), H823-H829. doi:10.1152/ajpheart.00986.2003

Wijffels, M. C. E. F., Kirchhof, C. J. H. J., Dorland, R., & Allessie, M. A. (1995). Atrial Fibrillation Begets Atrial Fibrillation. Circulation, 92(7), 1954-1968. doi:10.1161/01.cir.92.7.1954

Zlochiver, S., Muñoz, V., Vikstrom, K. L., Taffet, S. M., Berenfeld, O., & Jalife, J. (2008). Electrotonic Myofibroblast-to-Myocyte Coupling Increases Propensity to Reentrant Arrhythmias in Two-Dimensional Cardiac Monolayers. Biophysical Journal, 95(9), 4469-4480. doi:10.1529/biophysj.108.136473

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record