Ballesteros Canovas, JA.; Eguíbar Galán, MÁ.; Bodoque Del Pozo, JM.; Díez-Herrero, A.; Stoffel, M.; Gutierrez-Pérez, I. (2010). Estimating flash flood discharge in an ungauged mountain catchment with 2D hydraulic models and dendrogeomorphic palaeostage indicators. Hydrological Processes. 25(3):970-979. https://doi.org/10.1002/hyp.7888
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/64277
Title:
|
Estimating flash flood discharge in an ungauged mountain catchment with 2D hydraulic models and dendrogeomorphic palaeostage indicators
|
Author:
|
Ballesteros Canovas, J. A.
Eguíbar Galán, Miguel Ángel
Bodoque del Pozo, José María
Díez-Herrero, A
Stoffel, M
Gutierrez-Pérez, I.
|
UPV Unit:
|
Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
|
Issued date:
|
|
Abstract:
|
There is still wide uncertainty about past flash-flood processes in mountain regions owing to the lack of systematic databases on former events. This paper presents a methodology to reconstruct peak discharge of flash ...[+]
There is still wide uncertainty about past flash-flood processes in mountain regions owing to the lack of systematic databases on former events. This paper presents a methodology to reconstruct peak discharge of flash floods and illustrates a case in an ungauged catchment in the Spanish Central System. The use of dendrogeomorphic evidence (i.e. scars on trees) together with the combined use of a two-dimensional (2D) numerical hydraulic model and a terrestrial laser scan (TLS) has allowed estimation of peak discharge of a recent flash flood. The size and height distribution of scars observed in the field have been used to define three hypothetical scenarios (S min or minimum scenario; S med or medium scenario; and S max or maximum scenario), thus illustrating the uncertainty involved in peak-discharge estimation of flash floods in ungauged torrents. All scars analysed with dendrogeomorphic techniques stem from a large flash flood which took place on 17 December 1997. On the basis of the scenarios, peak discharge is estimated to 79 ± 14 m 3 s -1. The average deviation obtained between flood stage and expected scar height was - 0·09 ± 0·53 m. From the data, it becomes obvious that the geomorphic position of trees is the main factor controlling deviation rate. In this sense, scars with minimum deviation were located on trees growing in exposed locations, especially on unruffled bedrock where the model predicts higher specific kinetic energy. The approach used in this study demonstrates the potential of tree-ring analysis in palaeohydrology and for flood-risk assessment in catchments with vulnerable goods and infrastructure. Copyright © 2010 John Wiley & Sons, Ltd.
[-]
|
Subjects:
|
Palaeoflood
,
Peak discharge estimation
,
Spanish Central System
,
TLS
,
Tree rings
,
Peak discharge
,
Catchments
,
Estimation
,
Forestry
,
Hydraulic models
,
Hydraulic structures
,
Landforms
,
Risk assessment
,
Runoff
,
Seebeck effect
,
Surveying instruments
,
Trees (mathematics)
,
Floods
,
Catchment
,
Estimation method
,
Flash flood
,
Flood damage
,
Hydraulics
,
Mountain region
,
Paleoflood
,
Paleohydrology
,
River discharge
,
Tree ring
,
Two-dimensional modeling
,
Data Bases
,
Electric Discharge
,
Hydrology
,
Mountains
,
Rivers
,
Surveying
|
Copyrigths:
|
Cerrado |
Source:
|
Hydrological Processes. (issn:
0885-6087
)
|
DOI:
|
10.1002/hyp.7888
|
Publisher:
|
Wiley: 12 months
|
Publisher version:
|
http://dx.doi.org/10.1002/hyp.7888
|
Project ID:
|
info:eu-repo/grantAgreement/MEC//CGL2007-62063/ES/MEJORAS EN LA ESTIMACION DE LA FRECUENCIA Y MAGNITUD DE AVENIDAS TORRENCIALES MEDIANTE LA INCORPORACION DE ANALISIS DENDROGEOMORFOLOGICOS/
|
Thanks:
|
This paper was funded in part by the CICYT, the Den-droAvenidas project (number CGL2007-62063 of the Spanish Ministry of Science and Innovation) and the Instituto Geologico y Minero de Espana (IGME). The authors acknowledge ...[+]
This paper was funded in part by the CICYT, the Den-droAvenidas project (number CGL2007-62063 of the Spanish Ministry of Science and Innovation) and the Instituto Geologico y Minero de Espana (IGME). The authors acknowledge the valuable feedback of the anonymous reviewers and colleagues Virginia Ruiz, Teresa Herrero, and Hector Aguilera, as well as the kind collaboration of the Environment Department of Avila (Castilla-Leon), in particular forester J. L. Galan.
[-]
|
Type:
|
Artículo
|