Mostrar el registro sencillo del ítem
dc.contributor.author | Chicharro López, Francisco Israel | es_ES |
dc.contributor.author | Cordero Barbero, Alicia | es_ES |
dc.contributor.author | Torregrosa Sánchez, Juan Ramón | es_ES |
dc.date.accessioned | 2016-05-23T07:30:28Z | |
dc.date.available | 2016-05-23T07:30:28Z | |
dc.date.issued | 2015-06 | |
dc.identifier.issn | 1999-4893 | |
dc.identifier.uri | http://hdl.handle.net/10251/64559 | |
dc.description.abstract | In this paper, the dynamical behavior of different optimal iterative schemes for solving nonlinear equations with increasing order, is studied. The tendency of the complexity of the Julia set is analyzed and referred to the fractal dimension. In fact, this fractal dimension can be shown to be a powerful tool to compare iterative schemes that estimate the solution of a nonlinear equation. Based on the box-counting algorithm, several iterative derivative-free methods of different convergence orders are compared. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI | es_ES |
dc.relation.ispartof | Algorithms | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Dynamics and fractal dimension of Steffensen-type methods | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/a8020271 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia | es_ES |
dc.description.bibliographicCitation | Chicharro López, FI.; Cordero Barbero, A.; Torregrosa Sánchez, JR. (2015). Dynamics and fractal dimension of Steffensen-type methods. Algorithms. 8(2):271-279. doi:10.3390/a8020271 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.3390/a8020271 | es_ES |
dc.description.upvformatpinicio | 271 | es_ES |
dc.description.upvformatpfin | 279 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 296817 | es_ES |
dc.description.references | Kung, H. T., & Traub, J. F. (1974). Optimal Order of One-Point and Multipoint Iteration. Journal of the ACM, 21(4), 643-651. doi:10.1145/321850.321860 | es_ES |
dc.description.references | Varona, J. L. (2002). Graphic and numerical comparison between iterative methods. The Mathematical Intelligencer, 24(1), 37-46. doi:10.1007/bf03025310 | es_ES |
dc.description.references | Amat, S., Busquier, S., Bermúdez, C., & Plaza, S. (2012). On two families of high order Newton type methods. Applied Mathematics Letters, 25(12), 2209-2217. doi:10.1016/j.aml.2012.06.004 | es_ES |
dc.description.references | Blanchard, P. (1984). Complex analytic dynamics on the Riemann sphere. Bulletin of the American Mathematical Society, 11(1), 85-142. doi:10.1090/s0273-0979-1984-15240-6 | es_ES |
dc.description.references | Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2013). A new technique to obtain derivative-free optimal iterative methods for solving nonlinear equations. Journal of Computational and Applied Mathematics, 252, 95-102. doi:10.1016/j.cam.2012.03.030 | es_ES |
dc.description.references | Epureanu, B. I., & Greenside, H. S. (1998). Fractal Basins of Attraction Associated with a Damped Newton’s Method. SIAM Review, 40(1), 102-109. doi:10.1137/s0036144596310033 | es_ES |