- -

Dynamics and fractal dimension of Steffensen-type methods

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dynamics and fractal dimension of Steffensen-type methods

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Chicharro López, Francisco Israel es_ES
dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.date.accessioned 2016-05-23T07:30:28Z
dc.date.available 2016-05-23T07:30:28Z
dc.date.issued 2015-06
dc.identifier.issn 1999-4893
dc.identifier.uri http://hdl.handle.net/10251/64559
dc.description.abstract In this paper, the dynamical behavior of different optimal iterative schemes for solving nonlinear equations with increasing order, is studied. The tendency of the complexity of the Julia set is analyzed and referred to the fractal dimension. In fact, this fractal dimension can be shown to be a powerful tool to compare iterative schemes that estimate the solution of a nonlinear equation. Based on the box-counting algorithm, several iterative derivative-free methods of different convergence orders are compared. es_ES
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Algorithms es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Dynamics and fractal dimension of Steffensen-type methods es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/a8020271
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.description.bibliographicCitation Chicharro López, FI.; Cordero Barbero, A.; Torregrosa Sánchez, JR. (2015). Dynamics and fractal dimension of Steffensen-type methods. Algorithms. 8(2):271-279. doi:10.3390/a8020271 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.3390/a8020271 es_ES
dc.description.upvformatpinicio 271 es_ES
dc.description.upvformatpfin 279 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 296817 es_ES
dc.description.references Kung, H. T., & Traub, J. F. (1974). Optimal Order of One-Point and Multipoint Iteration. Journal of the ACM, 21(4), 643-651. doi:10.1145/321850.321860 es_ES
dc.description.references Varona, J. L. (2002). Graphic and numerical comparison between iterative methods. The Mathematical Intelligencer, 24(1), 37-46. doi:10.1007/bf03025310 es_ES
dc.description.references Amat, S., Busquier, S., Bermúdez, C., & Plaza, S. (2012). On two families of high order Newton type methods. Applied Mathematics Letters, 25(12), 2209-2217. doi:10.1016/j.aml.2012.06.004 es_ES
dc.description.references Blanchard, P. (1984). Complex analytic dynamics on the Riemann sphere. Bulletin of the American Mathematical Society, 11(1), 85-142. doi:10.1090/s0273-0979-1984-15240-6 es_ES
dc.description.references Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2013). A new technique to obtain derivative-free optimal iterative methods for solving nonlinear equations. Journal of Computational and Applied Mathematics, 252, 95-102. doi:10.1016/j.cam.2012.03.030 es_ES
dc.description.references Epureanu, B. I., & Greenside, H. S. (1998). Fractal Basins of Attraction Associated with a Damped Newton’s Method. SIAM Review, 40(1), 102-109. doi:10.1137/s0036144596310033 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem