Mostrar el registro sencillo del ítem
dc.contributor.author | Manjón Herrera, José Vicente | es_ES |
dc.contributor.author | Coupé, Pierrick | es_ES |
dc.contributor.author | Buades, Antonio | es_ES |
dc.date.accessioned | 2016-05-23T14:24:12Z | |
dc.date.available | 2016-05-23T14:24:12Z | |
dc.date.issued | 2015-05 | |
dc.identifier.issn | 1361-8415 | |
dc.identifier.uri | http://hdl.handle.net/10251/64623 | |
dc.description | NOTICE: this is the author’s version of a work that was accepted for publication in Medical Image AnalysisChanges resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Medical Image Analysis, [Volume 22, Issue 1, May 2015, Pages 35–47] DOI 10.1016/j.media.2015.01.004 | es_ES |
dc.description.abstract | This paper proposes a novel method for MRI denoising that exploits both the sparseness and self-similarity properties of the MR images. The proposed method is a two-stage approach that first filters the noisy image using a non local PCA thresholding strategy by automatically estimating the local noise level present in the image and second uses this filtered image as a guide image within a rotationally invariant non-local means filter. The proposed method internally estimates the amount of local noise presents in the images that enables applying it automatically to images with spatially varying noise levels and also corrects the Rician noise induced bias locally. The proposed approach has been compared with related state-of-the-art methods showing competitive results in all the studied cases. | es_ES |
dc.description.sponsorship | We are grateful to Dr. Matteo Mangioni and Dr. Alessandro Foi for their help on running their BM4D method in our comparisons. We want also to thank Dr. Luis Marti-Bonmati and Dr. Angel Alberich-Bayarri from Quiron Hospital of Valencia for providing the real clinical data used in this paper. This study has been carried out with financial support from the French State, managed by the French National Research Agency (ANR) in the frame of the Investments for the future Programme IdEx Bordeaux (ANR-10-IDEX-03-02), Cluster of excellence CPU and TRAIL (HR-DTI ANR-10-LABX-57). | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Medical Image Analysis | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | MRI | es_ES |
dc.subject | Denosing | es_ES |
dc.subject | PCA | es_ES |
dc.subject | Sparseness | es_ES |
dc.subject | Non-local means | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | MRI noise estimation and denoising using non-local PCA | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.media.2015.01.004 | |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-10-IDEX-0003/FR/Initiative d’excellence de l’Université de Bordeaux/IDEX BORDEAUX/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-10-IDEX-0003/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-10-LABX-0057/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-10-LABX-0057/FR/Translational Research and Advanced Imaging Laboratory/TRAIL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Manjón Herrera, JV.; Coupé, P.; Buades, A. (2015). MRI noise estimation and denoising using non-local PCA. Medical Image Analysis. 22(1):35-47. doi:10.1016/j.media.2015.01.004 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1016/j.media.2015.01.004 | es_ES |
dc.description.upvformatpinicio | 35 | es_ES |
dc.description.upvformatpfin | 47 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 22 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 285687 | es_ES |
dc.contributor.funder | Agence Nationale de la Recherche, Francia | es_ES |