- -

Toxicity Mechanisms of the Food Contaminant Citrinin: Application of a Quantitative Yeast Model

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Toxicity Mechanisms of the Food Contaminant Citrinin: Application of a Quantitative Yeast Model

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pascual-Ahuir Giner, María Desamparados es_ES
dc.contributor.author Vanacloig Pedrós, María Elena es_ES
dc.contributor.author Proft, Markus Hans es_ES
dc.date.accessioned 2016-05-23T14:58:33Z
dc.date.available 2016-05-23T14:58:33Z
dc.date.issued 2014-05
dc.identifier.issn 2072-6643
dc.identifier.uri http://hdl.handle.net/10251/64625
dc.description.abstract Mycotoxins are important food contaminants and a serious threat for human nutrition. However, in many cases the mechanisms of toxicity for this diverse group of metabolites are poorly understood. Here we apply live cell gene expression reporters in yeast as a quantitative model to unravel the cellular defense mechanisms in response to the mycotoxin citrinin. We find that citrinin triggers a fast and dose dependent activation of stress responsive promoters such as GRE2 or SOD2. More specifically, oxidative stress responsive pathways via the transcription factors Yap1 and Skn7 are critically implied in the response to citrinin. Additionally, genes in various multidrug resistance transport systems are functionally involved in the resistance to citrinin. Our study identifies the antioxidant defense as a major physiological response in the case of citrinin. In general, our results show that the use of live cell gene expression reporters in yeast are a powerful tool to identify toxicity targets and detoxification mechanisms of a broad range of food contaminants relevant for human nutrition. es_ES
dc.description.sponsorship This work was supported by Ministerio de Economia y Competitividad grant BFU2011-23326. We thank the Fond for Open Access Publication from Consejo Superior de Investigaciones Cientificas for supporting publication costs of this article. en_EN
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Nutrients es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Citrinin es_ES
dc.subject Oxidative stress es_ES
dc.subject Yeast es_ES
dc.subject Mycotoxins es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Toxicity Mechanisms of the Food Contaminant Citrinin: Application of a Quantitative Yeast Model es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/nu6052077
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BFU2011-23326/ES/REGULACION DE LA CROMATINA Y DE LA ESTRUCTURA MITOCONDRIAL EN RESPUESTA A ESTRES OSMOTICO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Pascual-Ahuir Giner, MD.; Vanacloig Pedrós, ME.; Proft, MH. (2014). Toxicity Mechanisms of the Food Contaminant Citrinin: Application of a Quantitative Yeast Model. Nutrients. 6(5):2077-2087. https://doi.org/10.3390/nu6052077 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.3390/nu6052077 es_ES
dc.description.upvformatpinicio 2077 es_ES
dc.description.upvformatpfin 2087 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 5 es_ES
dc.relation.senia 280731 es_ES
dc.identifier.pmid 24858409 en_EN
dc.identifier.pmcid PMC4042565 en_EN
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Consejo Superior de Investigaciones Científicas es_ES
dc.description.references Moretti, A., Susca, A., Mulé, G., Logrieco, A. F., & Proctor, R. H. (2013). Molecular biodiversity of mycotoxigenic fungi that threaten food safety. International Journal of Food Microbiology, 167(1), 57-66. doi:10.1016/j.ijfoodmicro.2013.06.033 es_ES
dc.description.references Wu, F., Groopman, J. D., & Pestka, J. J. (2014). Public Health Impacts of Foodborne Mycotoxins. Annual Review of Food Science and Technology, 5(1), 351-372. doi:10.1146/annurev-food-030713-092431 es_ES
dc.description.references Bennett, J. W., & Klich, M. (2003). Mycotoxins. Clinical Microbiology Reviews, 16(3), 497-516. doi:10.1128/cmr.16.3.497-516.2003 es_ES
dc.description.references Flajs, D., & Peraica, M. (2009). Toxicological Properties of Citrinin. Archives of Industrial Hygiene and Toxicology, 60(4). doi:10.2478/10004-1254-60-2009-1992 es_ES
dc.description.references Bouslimi, A., Ouannes, Z., Golli, E. E., Bouaziz, C., Hassen, W., & Bacha, H. (2008). Cytotoxicity and Oxidative Damage in Kidney Cells Exposed to the Mycotoxins Ochratoxin A and Citrinin: Individual and Combined Effects. Toxicology Mechanisms and Methods, 18(4), 341-349. doi:10.1080/15376510701556682 es_ES
dc.description.references El Golli, E., Hassen, W., Bouslimi, A., Bouaziz, C., Ladjimi, M. M., & Bacha, H. (2006). Induction of Hsp 70 in Vero cells in response to mycotoxins. Toxicology Letters, 166(2), 122-130. doi:10.1016/j.toxlet.2006.06.004 es_ES
dc.description.references Kumar, R., Dwivedi, P. D., Dhawan, A., Das, M., & Ansari, K. M. (2011). Citrinin-Generated Reactive Oxygen Species Cause Cell Cycle Arrest Leading to Apoptosis via the Intrinsic Mitochondrial Pathway in Mouse Skin. Toxicological Sciences, 122(2), 557-566. doi:10.1093/toxsci/kfr143 es_ES
dc.description.references Ribeiro, S. M. R., Chagas, G. M., Campello, A. P., & Kluppel, M. L. W. (1997). Mechanism of citrinin-induced dysfunction of mitochondria. V. Effect on the homeostasis of the reactive oxygen species. Cell Biochemistry and Function, 15(3), 203-209. doi:10.1002/(sici)1099-0844(199709)15:3<203::aid-cbf742>3.0.co;2-j es_ES
dc.description.references Chen, C.-C., & Chan, W.-H. (2009). Inhibition of Citrinin-Induced Apoptotic Biochemical Signaling in Human Hepatoma G2 Cells by Resveratrol. International Journal of Molecular Sciences, 10(8), 3338-3357. doi:10.3390/ijms10083338 es_ES
dc.description.references Hsu, L.-C., Hsu, Y.-W., Liang, Y.-H., Lin, Z.-H., Kuo, Y.-H., & Pan, T.-M. (2012). Protective Effect of Deferricoprogen Isolated from Monascus purpureus NTU 568 on Citrinin-Induced Apoptosis in HEK-293 Cells. Journal of Agricultural and Food Chemistry, 60(32), 7880-7885. doi:10.1021/jf301889q es_ES
dc.description.references Iwahashi, H., Kitagawa, E., Suzuki, Y., Ueda, Y., Ishizawa, Y., Nobumasa, H., … Iwahashi, Y. (2007). Evaluation of toxicity of the mycotoxin citrinin using yeast ORF DNA microarray and Oligo DNA microarray. BMC Genomics, 8(1), 95. doi:10.1186/1471-2164-8-95 es_ES
dc.description.references (2012). Scientific Opinion on the risks for public and animal health related to the presence of citrinin in food and feed. EFSA Journal, 10(3). doi:10.2903/j.efsa.2012.2605 es_ES
dc.description.references Dos Santos, S. C. (2012). Yeast toxicogenomics: genome-wide responses to chemical stresses with impact in environmental health, pharmacology, and biotechnology. Frontiers in Genetics, 3. doi:10.3389/fgene.2012.00063 es_ES
dc.description.references Rienzo, A., Pascual-Ahuir, A., & Proft, M. (2012). The use of a real-time luciferase assay to quantify gene expression dynamics in the living yeast cell. Yeast, 29(6), 219-231. doi:10.1002/yea.2905 es_ES
dc.description.references Dolz-Edo, L., Rienzo, A., Poveda-Huertes, D., Pascual-Ahuir, A., & Proft, M. (2013). Deciphering Dynamic Dose Responses of Natural Promoters and Single cis Elements upon Osmotic and Oxidative Stress in Yeast. Molecular and Cellular Biology, 33(11), 2228-2240. doi:10.1128/mcb.00240-13 es_ES
dc.description.references Garay-Arroyo, A., & Covarrubias, A. A. (1999). Three genes whose expression is induced by stress inSaccharomyces cerevisiae. Yeast, 15(10A), 879-892. doi:10.1002/(sici)1097-0061(199907)15:10a<879::aid-yea428>3.0.co;2-q es_ES
dc.description.references Proft, M. (2001). Regulation of the Sko1 transcriptional repressor by the Hog1 MAP kinase in response to osmotic stress. The EMBO Journal, 20(5), 1123-1133. doi:10.1093/emboj/20.5.1123 es_ES
dc.description.references Mamnun, Y. M., Pandjaitan, R., Mahé, Y., Delahodde, A., & Kuchler, K. (2002). The yeast zinc finger regulators Pdr1p and Pdr3p control pleiotropic drug resistance (PDR) as homo- and heterodimers in vivo. Molecular Microbiology, 46(5), 1429-1440. doi:10.1046/j.1365-2958.2002.03262.x es_ES
dc.description.references Chagas, G. M., Campello, A. P., & Klüppel, M. L. W. (1992). Mechanism of citrinin-induced dysfunction of mitochondria. I. Effects on respiration, enzyme activities and membrane potential of renal cortical mitochondria. Journal of Applied Toxicology, 12(2), 123-129. doi:10.1002/jat.2550120209 es_ES
dc.description.references Klarić, M. Š., Želježić, D., Rumora, L., Peraica, M., Pepeljnjak, S., & Domijan, A.-M. (2011). A potential role of calcium in apoptosis and aberrant chromatin forms in porcine kidney PK15 cells induced by individual and combined ochratoxin A and citrinin. Archives of Toxicology, 86(1), 97-107. doi:10.1007/s00204-011-0735-9 es_ES
dc.description.references Yu, F.-Y., Liao, Y.-C., Chang, C.-H., & Liu, B.-H. (2006). Citrinin induces apoptosis in HL-60 cells via activation of the mitochondrial pathway. Toxicology Letters, 161(2), 143-151. doi:10.1016/j.toxlet.2005.08.009 es_ES
dc.description.references Dönmez-Altuntas, H., Dumlupinar, G., Imamoglu, N., Hamurcu, Z., & Liman, B. C. (2007). Effects of the mycotoxin citrinin on micronucleus formation in a cytokinesis-block genotoxicity assay in cultured human lymphocytes. Journal of Applied Toxicology, 27(4), 337-341. doi:10.1002/jat.1209 es_ES
dc.description.references Föllmann, W., Behm, C., & Degen, G. H. (2014). Toxicity of the mycotoxin citrinin and its metabolite dihydrocitrinone and of mixtures of citrinin and ochratoxin A in vitro. Archives of Toxicology, 88(5), 1097-1107. doi:10.1007/s00204-014-1216-8 es_ES
dc.description.references Knasmuller, S., Cavin, C., Chakraborty, A., Darroudi, F., Majer, B. J., Huber, W. W., & Ehrlich, V. A. (2004). Structurally Related Mycotoxins Ochratoxin A, Ochratoxin B, and Citrinin Differ in Their Genotoxic Activities and in Their Mode of Action in Human-Derived Liver (HepG2) Cells: Implications for Risk Assessment. Nutrition and Cancer, 50(2), 190-197. doi:10.1207/s15327914nc5002_9 es_ES
dc.description.references Thust, R., & Kneist, S. (1979). Activity of citrinin metabolized by rat and human microsome fractions in clastogenicity and SCE assays on Chinese hamster V79-E cells. Mutation Research/Genetic Toxicology, 67(4), 321-330. doi:10.1016/0165-1218(79)90028-4 es_ES
dc.description.references Van Loon, A. P., Pesold-Hurt, B., & Schatz, G. (1986). A yeast mutant lacking mitochondrial manganese-superoxide dismutase is hypersensitive to oxygen. Proceedings of the National Academy of Sciences, 83(11), 3820-3824. doi:10.1073/pnas.83.11.3820 es_ES
dc.description.references Delaunay, A., Isnard, A.-D., & Toledano, M. B. (2000). H2O2 sensing through oxidation of the Yap1 transcription factor. The EMBO Journal, 19(19), 5157-5166. doi:10.1093/emboj/19.19.5157 es_ES
dc.description.references Toone, W. M., Morgan, B. A., & Jones, N. (2001). Redox control of AP-1-like factors in yeast and beyond. Oncogene, 20(19), 2336-2346. doi:10.1038/sj.onc.1204384 es_ES
dc.description.references Heider, E. M., Harper, J. K., Grant, D. M., Hoffman, A., Dugan, F., Tomer, D. P., & O’Neill, K. L. (2006). Exploring unusual antioxidant activity in a benzoic acid derivative: a proposed mechanism for citrinin. Tetrahedron, 62(6), 1199-1208. doi:10.1016/j.tet.2005.10.066 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem