- -

Numerical study of the influence of ZnTe thickness on CdS/ZnTe solar cell performance

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Numerical study of the influence of ZnTe thickness on CdS/ZnTe solar cell performance

Mostrar el registro completo del ítem

Skhouni, O.; El Manouni, A.; Marí, B.; Ullah, H. (2016). Numerical study of the influence of ZnTe thickness on CdS/ZnTe solar cell performance. European Physical Journal: Applied Physics. 74(2):24602-1-24602-6. doi:10.1051/epjap/2015150365

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/64665

Ficheros en el ítem

Metadatos del ítem

Título: Numerical study of the influence of ZnTe thickness on CdS/ZnTe solar cell performance
Autor: Skhouni, Othmane El Manouni, Ahmed Marí, B. Ullah, Hanif
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
At present most of II–VI semiconductor based solar cells use the CdTe material as an absorber film. The simulation of its performance is realized by means of various numerical modelling programs. We have modelled a solar ...[+]
Palabras clave: Solar cells , Numerical simulation , SCAPS , ZnTe
Derechos de uso: Reserva de todos los derechos
Fuente:
European Physical Journal: Applied Physics. (issn: 1286-0042 ) (eissn: 1286-0050 )
DOI: 10.1051/epjap/2015150365
Editorial:
EDP Sciences
Versión del editor: http://dx.doi.org/10.1051/epjap/2015150365
Tipo: Artículo

References

Kaneta, A., & Adachi, S. (2000). Photoreflectance study in theE1andE1+Delta1transition regions of ZnTe. Journal of Physics D: Applied Physics, 33(8), 901-905. doi:10.1088/0022-3727/33/8/303

Fang F., Mc Candless B.E., Opila R.L., I.E.E.E. 001258 (2009)

Pistone, A., Arico, A. ., Antonucci, P. ., Silvestro, D., & Antonucci, V. (1998). Preparation and characterization of thin film ZnCuTe semiconductors. Solar Energy Materials and Solar Cells, 53(3-4), 255-267. doi:10.1016/s0927-0248(98)00013-0 [+]
Kaneta, A., & Adachi, S. (2000). Photoreflectance study in theE1andE1+Delta1transition regions of ZnTe. Journal of Physics D: Applied Physics, 33(8), 901-905. doi:10.1088/0022-3727/33/8/303

Fang F., Mc Candless B.E., Opila R.L., I.E.E.E. 001258 (2009)

Pistone, A., Arico, A. ., Antonucci, P. ., Silvestro, D., & Antonucci, V. (1998). Preparation and characterization of thin film ZnCuTe semiconductors. Solar Energy Materials and Solar Cells, 53(3-4), 255-267. doi:10.1016/s0927-0248(98)00013-0

Han, D.-H., Choi, S.-J., & Park, S.-M. (2003). Electrochemical Preparation of Zinc Telluride Films on Gold Electrodes. Journal of The Electrochemical Society, 150(5), C342. doi:10.1149/1.1565136

Luque, A., & Martí, A. (1997). Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels. Physical Review Letters, 78(26), 5014-5017. doi:10.1103/physrevlett.78.5014

Dhomkar, S., Manna, U., Peng, L., Moug, R., Noyan, I. C., Tamargo, M. C., & Kuskovsky, I. L. (2013). Feasibility of submonolayer ZnTe/ZnCdSe quantum dots as intermediate band solar cell material system. Solar Energy Materials and Solar Cells, 117, 604-609. doi:10.1016/j.solmat.2013.07.037

Wang, W., Lin, A. S., & Phillips, J. D. (2009). Intermediate-band photovoltaic solar cell based on ZnTe:O. Applied Physics Letters, 95(1), 011103. doi:10.1063/1.3166863

Araújo, G. L., & Martí, A. (1994). Absolute limiting efficiencies for photovoltaic energy conversion. Solar Energy Materials and Solar Cells, 33(2), 213-240. doi:10.1016/0927-0248(94)90209-7

Luque, A. (2001). Photovoltaic market and costs forecast based on a demand elasticity model. Progress in Photovoltaics: Research and Applications, 9(4), 303-312. doi:10.1002/pip.371

Luque, A., & Martí, A. (2010). The Intermediate Band Solar Cell: Progress Toward the Realization of an Attractive Concept. Advanced Materials, 22(2), 160-174. doi:10.1002/adma.200902388

Amin, N., Isaka, T., Yamada, A., & Konagai, M. (2001). Highly efficient 1μm thick CdTe solar cells with textured TCOs. Solar Energy Materials and Solar Cells, 67(1-4), 195-201. doi:10.1016/s0927-0248(00)00281-6

Amin, N., Sopian, K., & Konagai, M. (2007). Numerical modeling of CdS/CdTe and CdS/CdTe/ZnTe solar cells as a function of CdTe thickness. Solar Energy Materials and Solar Cells, 91(13), 1202-1208. doi:10.1016/j.solmat.2007.04.006

Williams, B. L., Major, J. D., Bowen, L., Phillips, L., Zoppi, G., Forbes, I., & Durose, K. (2014). Challenges and prospects for developing CdS/CdTe substrate solar cells on Mo foils. Solar Energy Materials and Solar Cells, 124, 31-38. doi:10.1016/j.solmat.2014.01.017

Burgelman, M., Nollet, P., & Degrave, S. (2000). Modelling polycrystalline semiconductor solar cells. Thin Solid Films, 361-362, 527-532. doi:10.1016/s0040-6090(99)00825-1

Ullah, H., & Marí, B. (2014). Numerical analysis of SnS based polycrystalline solar cells. Superlattices and Microstructures, 72, 148-155. doi:10.1016/j.spmi.2014.03.042

Skhouni, O., El Manouni, A., Mollar, M., Schrebler, R., & Marí, B. (2014). ZnTe thin films grown by electrodeposition technique on Fluorine Tin Oxide substrates. Thin Solid Films, 564, 195-200. doi:10.1016/j.tsf.2014.06.002

Shockley, W., & Read, W. T. (1952). Statistics of the Recombinations of Holes and Electrons. Physical Review, 87(5), 835-842. doi:10.1103/physrev.87.835

Fan, Z., & Lu, J. G. (2005). Zinc Oxide Nanostructures: Synthesis and Properties. Journal of Nanoscience and Nanotechnology, 5(10), 1561-1573. doi:10.1166/jnn.2005.182

Verity, D., Bryant, F. J., Scott, C. G., & Shaw, D. (1983). Deep level transient spectroscopy of hole traps in Zn-annealed ZnTe. Solid State Communications, 46(11), 795-798. doi:10.1016/0038-1098(83)90004-2

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem