- -

Numerical study of the influence of ZnTe thickness on CdS/ZnTe solar cell performance

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Numerical study of the influence of ZnTe thickness on CdS/ZnTe solar cell performance

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Skhouni, Othmane es_ES
dc.contributor.author El Manouni, Ahmed es_ES
dc.contributor.author Marí, B. es_ES
dc.contributor.author Ullah, Hanif es_ES
dc.date.accessioned 2016-05-24T15:32:00Z
dc.date.available 2016-05-24T15:32:00Z
dc.date.issued 2016-05
dc.identifier.issn 1286-0042
dc.identifier.uri http://hdl.handle.net/10251/64665
dc.description.abstract At present most of II–VI semiconductor based solar cells use the CdTe material as an absorber film. The simulation of its performance is realized by means of various numerical modelling programs. We have modelled a solar cell based on zinc telluride (ZnTe) thin film as absorber in substitution to the CdTe material, which contains the cadmium element known by its toxicity. The performance of such photovoltaic device has been numerically simulated and the thickness of the absorber layer has been optimized to give the optimal conversion efficiency. A photovoltaic device consisting of a ZnTe layer as absorber, CdS as the buffer layer and ZnO as a window layer was modelled through Solar Cell Capacitance Simulator Software. Dark and illuminated I-V characteristics and the results for different output parameters of ZnO/CdS/ZnTe solar cell were analyzed. The effect of ZnTe absorber thickness on different main working parameters such as: open-circuit voltage Voc, short-circuit current density Jsc, fill factor FF, photovoltaic conversion efficiency η was intensely studied in order to optimize ZnTe film thickness. This study reveals that increasing the thickness of ZnTe absorber layer results in higher efficiency until a maximum value and then decreases slightly. This maximum was found to be 10% at ZnTe optimum thickness close to 2 μm. es_ES
dc.language Inglés es_ES
dc.publisher EDP Sciences es_ES
dc.relation.ispartof European Physical Journal: Applied Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Solar cells es_ES
dc.subject Numerical simulation es_ES
dc.subject SCAPS es_ES
dc.subject ZnTe es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Numerical study of the influence of ZnTe thickness on CdS/ZnTe solar cell performance es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1051/epjap/2015150365
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Skhouni, O.; El Manouni, A.; Marí, B.; Ullah, H. (2016). Numerical study of the influence of ZnTe thickness on CdS/ZnTe solar cell performance. European Physical Journal: Applied Physics. 74(2):24602-1-24602-6. doi:10.1051/epjap/2015150365 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1051/epjap/2015150365 es_ES
dc.description.upvformatpinicio 24602-1 es_ES
dc.description.upvformatpfin 24602-6 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 74 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 301787 es_ES
dc.identifier.eissn 1286-0050
dc.description.references Kaneta, A., & Adachi, S. (2000). Photoreflectance study in theE1andE1+Delta1transition regions of ZnTe. Journal of Physics D: Applied Physics, 33(8), 901-905. doi:10.1088/0022-3727/33/8/303 es_ES
dc.description.references Fang F., Mc Candless B.E., Opila R.L., I.E.E.E. 001258 (2009) es_ES
dc.description.references Pistone, A., Arico, A. ., Antonucci, P. ., Silvestro, D., & Antonucci, V. (1998). Preparation and characterization of thin film ZnCuTe semiconductors. Solar Energy Materials and Solar Cells, 53(3-4), 255-267. doi:10.1016/s0927-0248(98)00013-0 es_ES
dc.description.references Han, D.-H., Choi, S.-J., & Park, S.-M. (2003). Electrochemical Preparation of Zinc Telluride Films on Gold Electrodes. Journal of The Electrochemical Society, 150(5), C342. doi:10.1149/1.1565136 es_ES
dc.description.references Luque, A., & Martí, A. (1997). Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels. Physical Review Letters, 78(26), 5014-5017. doi:10.1103/physrevlett.78.5014 es_ES
dc.description.references Dhomkar, S., Manna, U., Peng, L., Moug, R., Noyan, I. C., Tamargo, M. C., & Kuskovsky, I. L. (2013). Feasibility of submonolayer ZnTe/ZnCdSe quantum dots as intermediate band solar cell material system. Solar Energy Materials and Solar Cells, 117, 604-609. doi:10.1016/j.solmat.2013.07.037 es_ES
dc.description.references Wang, W., Lin, A. S., & Phillips, J. D. (2009). Intermediate-band photovoltaic solar cell based on ZnTe:O. Applied Physics Letters, 95(1), 011103. doi:10.1063/1.3166863 es_ES
dc.description.references Araújo, G. L., & Martí, A. (1994). Absolute limiting efficiencies for photovoltaic energy conversion. Solar Energy Materials and Solar Cells, 33(2), 213-240. doi:10.1016/0927-0248(94)90209-7 es_ES
dc.description.references Luque, A. (2001). Photovoltaic market and costs forecast based on a demand elasticity model. Progress in Photovoltaics: Research and Applications, 9(4), 303-312. doi:10.1002/pip.371 es_ES
dc.description.references Luque, A., & Martí, A. (2010). The Intermediate Band Solar Cell: Progress Toward the Realization of an Attractive Concept. Advanced Materials, 22(2), 160-174. doi:10.1002/adma.200902388 es_ES
dc.description.references Amin, N., Isaka, T., Yamada, A., & Konagai, M. (2001). Highly efficient 1μm thick CdTe solar cells with textured TCOs. Solar Energy Materials and Solar Cells, 67(1-4), 195-201. doi:10.1016/s0927-0248(00)00281-6 es_ES
dc.description.references Amin, N., Sopian, K., & Konagai, M. (2007). Numerical modeling of CdS/CdTe and CdS/CdTe/ZnTe solar cells as a function of CdTe thickness. Solar Energy Materials and Solar Cells, 91(13), 1202-1208. doi:10.1016/j.solmat.2007.04.006 es_ES
dc.description.references Williams, B. L., Major, J. D., Bowen, L., Phillips, L., Zoppi, G., Forbes, I., & Durose, K. (2014). Challenges and prospects for developing CdS/CdTe substrate solar cells on Mo foils. Solar Energy Materials and Solar Cells, 124, 31-38. doi:10.1016/j.solmat.2014.01.017 es_ES
dc.description.references Burgelman, M., Nollet, P., & Degrave, S. (2000). Modelling polycrystalline semiconductor solar cells. Thin Solid Films, 361-362, 527-532. doi:10.1016/s0040-6090(99)00825-1 es_ES
dc.description.references Ullah, H., & Marí, B. (2014). Numerical analysis of SnS based polycrystalline solar cells. Superlattices and Microstructures, 72, 148-155. doi:10.1016/j.spmi.2014.03.042 es_ES
dc.description.references Skhouni, O., El Manouni, A., Mollar, M., Schrebler, R., & Marí, B. (2014). ZnTe thin films grown by electrodeposition technique on Fluorine Tin Oxide substrates. Thin Solid Films, 564, 195-200. doi:10.1016/j.tsf.2014.06.002 es_ES
dc.description.references Shockley, W., & Read, W. T. (1952). Statistics of the Recombinations of Holes and Electrons. Physical Review, 87(5), 835-842. doi:10.1103/physrev.87.835 es_ES
dc.description.references Fan, Z., & Lu, J. G. (2005). Zinc Oxide Nanostructures: Synthesis and Properties. Journal of Nanoscience and Nanotechnology, 5(10), 1561-1573. doi:10.1166/jnn.2005.182 es_ES
dc.description.references Verity, D., Bryant, F. J., Scott, C. G., & Shaw, D. (1983). Deep level transient spectroscopy of hole traps in Zn-annealed ZnTe. Solid State Communications, 46(11), 795-798. doi:10.1016/0038-1098(83)90004-2 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem