Mostrar el registro sencillo del ítem
dc.contributor.author | Skhouni, Othmane | es_ES |
dc.contributor.author | El Manouni, Ahmed | es_ES |
dc.contributor.author | Marí, B. | es_ES |
dc.contributor.author | Ullah, Hanif | es_ES |
dc.date.accessioned | 2016-05-24T15:32:00Z | |
dc.date.available | 2016-05-24T15:32:00Z | |
dc.date.issued | 2016-05 | |
dc.identifier.issn | 1286-0042 | |
dc.identifier.uri | http://hdl.handle.net/10251/64665 | |
dc.description.abstract | At present most of II–VI semiconductor based solar cells use the CdTe material as an absorber film. The simulation of its performance is realized by means of various numerical modelling programs. We have modelled a solar cell based on zinc telluride (ZnTe) thin film as absorber in substitution to the CdTe material, which contains the cadmium element known by its toxicity. The performance of such photovoltaic device has been numerically simulated and the thickness of the absorber layer has been optimized to give the optimal conversion efficiency. A photovoltaic device consisting of a ZnTe layer as absorber, CdS as the buffer layer and ZnO as a window layer was modelled through Solar Cell Capacitance Simulator Software. Dark and illuminated I-V characteristics and the results for different output parameters of ZnO/CdS/ZnTe solar cell were analyzed. The effect of ZnTe absorber thickness on different main working parameters such as: open-circuit voltage Voc, short-circuit current density Jsc, fill factor FF, photovoltaic conversion efficiency η was intensely studied in order to optimize ZnTe film thickness. This study reveals that increasing the thickness of ZnTe absorber layer results in higher efficiency until a maximum value and then decreases slightly. This maximum was found to be 10% at ZnTe optimum thickness close to 2 μm. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | EDP Sciences | es_ES |
dc.relation.ispartof | European Physical Journal: Applied Physics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Solar cells | es_ES |
dc.subject | Numerical simulation | es_ES |
dc.subject | SCAPS | es_ES |
dc.subject | ZnTe | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Numerical study of the influence of ZnTe thickness on CdS/ZnTe solar cell performance | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1051/epjap/2015150365 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Skhouni, O.; El Manouni, A.; Marí, B.; Ullah, H. (2016). Numerical study of the influence of ZnTe thickness on CdS/ZnTe solar cell performance. European Physical Journal: Applied Physics. 74(2):24602-1-24602-6. doi:10.1051/epjap/2015150365 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1051/epjap/2015150365 | es_ES |
dc.description.upvformatpinicio | 24602-1 | es_ES |
dc.description.upvformatpfin | 24602-6 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 74 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 301787 | es_ES |
dc.identifier.eissn | 1286-0050 | |
dc.description.references | Kaneta, A., & Adachi, S. (2000). Photoreflectance study in theE1andE1+Delta1transition regions of ZnTe. Journal of Physics D: Applied Physics, 33(8), 901-905. doi:10.1088/0022-3727/33/8/303 | es_ES |
dc.description.references | Fang F., Mc Candless B.E., Opila R.L., I.E.E.E. 001258 (2009) | es_ES |
dc.description.references | Pistone, A., Arico, A. ., Antonucci, P. ., Silvestro, D., & Antonucci, V. (1998). Preparation and characterization of thin film ZnCuTe semiconductors. Solar Energy Materials and Solar Cells, 53(3-4), 255-267. doi:10.1016/s0927-0248(98)00013-0 | es_ES |
dc.description.references | Han, D.-H., Choi, S.-J., & Park, S.-M. (2003). Electrochemical Preparation of Zinc Telluride Films on Gold Electrodes. Journal of The Electrochemical Society, 150(5), C342. doi:10.1149/1.1565136 | es_ES |
dc.description.references | Luque, A., & Martí, A. (1997). Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels. Physical Review Letters, 78(26), 5014-5017. doi:10.1103/physrevlett.78.5014 | es_ES |
dc.description.references | Dhomkar, S., Manna, U., Peng, L., Moug, R., Noyan, I. C., Tamargo, M. C., & Kuskovsky, I. L. (2013). Feasibility of submonolayer ZnTe/ZnCdSe quantum dots as intermediate band solar cell material system. Solar Energy Materials and Solar Cells, 117, 604-609. doi:10.1016/j.solmat.2013.07.037 | es_ES |
dc.description.references | Wang, W., Lin, A. S., & Phillips, J. D. (2009). Intermediate-band photovoltaic solar cell based on ZnTe:O. Applied Physics Letters, 95(1), 011103. doi:10.1063/1.3166863 | es_ES |
dc.description.references | Araújo, G. L., & Martí, A. (1994). Absolute limiting efficiencies for photovoltaic energy conversion. Solar Energy Materials and Solar Cells, 33(2), 213-240. doi:10.1016/0927-0248(94)90209-7 | es_ES |
dc.description.references | Luque, A. (2001). Photovoltaic market and costs forecast based on a demand elasticity model. Progress in Photovoltaics: Research and Applications, 9(4), 303-312. doi:10.1002/pip.371 | es_ES |
dc.description.references | Luque, A., & MartÃ, A. (2010). The Intermediate Band Solar Cell: Progress Toward the Realization of an Attractive Concept. Advanced Materials, 22(2), 160-174. doi:10.1002/adma.200902388 | es_ES |
dc.description.references | Amin, N., Isaka, T., Yamada, A., & Konagai, M. (2001). Highly efficient 1μm thick CdTe solar cells with textured TCOs. Solar Energy Materials and Solar Cells, 67(1-4), 195-201. doi:10.1016/s0927-0248(00)00281-6 | es_ES |
dc.description.references | Amin, N., Sopian, K., & Konagai, M. (2007). Numerical modeling of CdS/CdTe and CdS/CdTe/ZnTe solar cells as a function of CdTe thickness. Solar Energy Materials and Solar Cells, 91(13), 1202-1208. doi:10.1016/j.solmat.2007.04.006 | es_ES |
dc.description.references | Williams, B. L., Major, J. D., Bowen, L., Phillips, L., Zoppi, G., Forbes, I., & Durose, K. (2014). Challenges and prospects for developing CdS/CdTe substrate solar cells on Mo foils. Solar Energy Materials and Solar Cells, 124, 31-38. doi:10.1016/j.solmat.2014.01.017 | es_ES |
dc.description.references | Burgelman, M., Nollet, P., & Degrave, S. (2000). Modelling polycrystalline semiconductor solar cells. Thin Solid Films, 361-362, 527-532. doi:10.1016/s0040-6090(99)00825-1 | es_ES |
dc.description.references | Ullah, H., & Marí, B. (2014). Numerical analysis of SnS based polycrystalline solar cells. Superlattices and Microstructures, 72, 148-155. doi:10.1016/j.spmi.2014.03.042 | es_ES |
dc.description.references | Skhouni, O., El Manouni, A., Mollar, M., Schrebler, R., & Marí, B. (2014). ZnTe thin films grown by electrodeposition technique on Fluorine Tin Oxide substrates. Thin Solid Films, 564, 195-200. doi:10.1016/j.tsf.2014.06.002 | es_ES |
dc.description.references | Shockley, W., & Read, W. T. (1952). Statistics of the Recombinations of Holes and Electrons. Physical Review, 87(5), 835-842. doi:10.1103/physrev.87.835 | es_ES |
dc.description.references | Fan, Z., & Lu, J. G. (2005). Zinc Oxide Nanostructures: Synthesis and Properties. Journal of Nanoscience and Nanotechnology, 5(10), 1561-1573. doi:10.1166/jnn.2005.182 | es_ES |
dc.description.references | Verity, D., Bryant, F. J., Scott, C. G., & Shaw, D. (1983). Deep level transient spectroscopy of hole traps in Zn-annealed ZnTe. Solid State Communications, 46(11), 795-798. doi:10.1016/0038-1098(83)90004-2 | es_ES |