- -

Photocatalytic Activity of Au/TiO2 Photocatalysts for H2 Evolution: Role of the Au Nanoparticles as a Function of the Irradiation Wavelength

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Photocatalytic Activity of Au/TiO2 Photocatalysts for H2 Evolution: Role of the Au Nanoparticles as a Function of the Irradiation Wavelength

Mostrar el registro completo del ítem

Serra, M.; Albero Sancho, J.; García Gómez, H. (2015). Photocatalytic Activity of Au/TiO2 Photocatalysts for H2 Evolution: Role of the Au Nanoparticles as a Function of the Irradiation Wavelength. ChemPhysChem. 16(9):1842-1845. https://doi.org/10.1002/cphc.201500141

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/64700

Ficheros en el ítem

Metadatos del ítem

Título: Photocatalytic Activity of Au/TiO2 Photocatalysts for H2 Evolution: Role of the Au Nanoparticles as a Function of the Irradiation Wavelength
Autor: Serra, Marco Albero Sancho, Josep García Gómez, Hermenegildo
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
An investigation of hydrogen production with a series of Au/TiO2 photocatalysts reveals that the Au nanoparticles play different roles depending on the wavelength of the light irradiation. Under visible-light irradiation, ...[+]
Palabras clave: Gold , H-2 evolution , light harvester , nanoparticles , photocatalysis
Derechos de uso: Cerrado
Fuente:
ChemPhysChem. (issn: 1439-4235 ) (eissn: 1439-7641 )
DOI: 10.1002/cphc.201500141
Editorial:
Wiley
Versión del editor: http://dx.doi.org/10.1002/cphc.201500141
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2013%2F014/ES/SINTESIS DE GRAFENO Y DERIVADOS COMO SENSORES O CON PROPIEDADES OPTOELECTRONICAS/
Agradecimientos:
Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2012-32315) and Generalitat Valenciana (Prometeo 2013/014) is gratefully acknowledged. M.S. and J.A. thank the Spanish CSIC and ...[+]
Tipo: Artículo

References

Bard, A. J., & Fox, M. A. (1995). Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen. Accounts of Chemical Research, 28(3), 141-145. doi:10.1021/ar00051a007

Balzani, V., Credi, A., & Venturi, M. (2008). Photochemical Conversion of Solar Energy. ChemSusChem, 1(1-2), 26-58. doi:10.1002/cssc.200700087

Centi, G., & Perathoner, S. (2010). Towards Solar Fuels from Water and CO2. ChemSusChem, 3(2), 195-208. doi:10.1002/cssc.200900289 [+]
Bard, A. J., & Fox, M. A. (1995). Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen. Accounts of Chemical Research, 28(3), 141-145. doi:10.1021/ar00051a007

Balzani, V., Credi, A., & Venturi, M. (2008). Photochemical Conversion of Solar Energy. ChemSusChem, 1(1-2), 26-58. doi:10.1002/cssc.200700087

Centi, G., & Perathoner, S. (2010). Towards Solar Fuels from Water and CO2. ChemSusChem, 3(2), 195-208. doi:10.1002/cssc.200900289

Herrmann, J.-M. (1999). Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today, 53(1), 115-129. doi:10.1016/s0920-5861(99)00107-8

Maeda, K., & Domen, K. (2010). Photocatalytic Water Splitting: Recent Progress and Future Challenges. The Journal of Physical Chemistry Letters, 1(18), 2655-2661. doi:10.1021/jz1007966

Montes-Navajas, P., Serra, M., Corma, A., & Garcia, H. (2014). Contrasting photocatalytic activity of commercial TiO2 samples for hydrogen generation. Catalysis Today, 225, 52-54. doi:10.1016/j.cattod.2013.09.025

Hammarström, L. (2009). Artificial Photosynthesis and Solar Fuels. Accounts of Chemical Research, 42(12), 1859-1860. doi:10.1021/ar900267k

Primo, A., Corma, A., & García, H. (2011). Titania supported gold nanoparticles as photocatalyst. Phys. Chem. Chem. Phys., 13(3), 886-910. doi:10.1039/c0cp00917b

Primo, A., Marino, T., Corma, A., Molinari, R., & García, H. (2011). Efficient Visible-Light Photocatalytic Water Splitting by Minute Amounts of Gold Supported on Nanoparticulate CeO2Obtained by a Biopolymer Templating Method. Journal of the American Chemical Society, 133(18), 6930-6933. doi:10.1021/ja2011498

Gomes Silva, C., Juárez, R., Marino, T., Molinari, R., & García, H. (2011). Influence of Excitation Wavelength (UV or Visible Light) on the Photocatalytic Activity of Titania Containing Gold Nanoparticles for the Generation of Hydrogen or Oxygen from Water. Journal of the American Chemical Society, 133(3), 595-602. doi:10.1021/ja1086358

Yan, J., Wu, G., Guan, N., & Li, L. (2013). Synergetic promotion of the photocatalytic activity of TiO2 by gold deposition under UV-visible light irradiation. Chemical Communications, 49(100), 11767. doi:10.1039/c3cc46832a

Naya, S., Teranishi, M., Isobe, T., & Tada, H. (2010). Light wavelength-switchable photocatalytic reaction by gold nanoparticle-loaded titanium(iv) dioxide. Chem. Commun., 46(5), 815-817. doi:10.1039/b918444a

Murdoch, M., Waterhouse, G. I. N., Nadeem, M. A., Metson, J. B., Keane, M. A., Howe, R. F., … Idriss, H. (2011). The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. Nature Chemistry, 3(6), 489-492. doi:10.1038/nchem.1048

Montes-Navajas, P., Serra, M., & Garcia, H. (2013). Influence of the irradiation wavelength on the photocatalytic activity of Au–Pt nanoalloys supported on TiO2 for hydrogen generation from water. Catalysis Science & Technology, 3(9), 2252. doi:10.1039/c3cy00102d

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem