- -

Detecting Positive and Negative Deceptive Opinions using PU-learning

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Detecting Positive and Negative Deceptive Opinions using PU-learning

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hernández Fusilier, Donato es_ES
dc.contributor.author Montes Gómez, Manuel es_ES
dc.contributor.author Rosso, Paolo es_ES
dc.contributor.author Guzmán Cabrera, Rafael es_ES
dc.date.accessioned 2016-05-26T07:42:07Z
dc.date.available 2016-05-26T07:42:07Z
dc.date.issued 2015-07
dc.identifier.issn 0306-4573
dc.identifier.uri http://hdl.handle.net/10251/64736
dc.description.abstract [EN] Nowadays a large number of opinion reviews are posted on the Web. Such reviews are a very important source of information for customers and companies. The former rely more than ever on online reviews to make their purchase decisions, and the latter to respond promptly to their clients’ expectations. Unfortunately, due to the business that is behind, there is an increasing number of deceptive opinions, that is, fictitious opinions that have been deliberately written to sound authentic, in order to deceive the consumers promoting a low quality product (positive deceptive opinions) or criticizing a potentially good quality one (negative deceptive opinions). In this paper we focus on the detection of both types of deceptive opinions, positive and negative. Due to the scarcity of examples of deceptive opinions, we propose to approach the problem of the detection of deceptive opinions employing PU-learning. PU-learning is a semi-supervised technique for building a binary classifier on the basis of positive (i.e., deceptive opinions) and unlabeled examples only. Concretely, we propose a novel method that with respect to its original version is much more conservative at the moment of selecting the negative examples (i.e., not deceptive opinions) from the unlabeled ones. The obtained results show that the proposed PU-learning method consistently outperformed the original PU-learning approach. In particular, results show an average improvement of 8.2% and 1.6% over the original approach in the detection of positive and negative deceptive opinions respectively. 2014 Elsevier Ltd. All rights reserved. es_ES
dc.description.sponsorship This work is the result of the collaboration in the framework of the WIQEI IRSES project (Grant No. 269180) within the FP 7 Marie Curie. The work of the third author was in the framework the DIANA-APPLICATIONS-Finding Hidden Knowledge in Texts: Applications (TIN2012-38603-C02-01) project, and the VLC/CAMPUS Microcluster on Multimodal Interaction in Intelligent Systems. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Information Processing and Management es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Opinion mining es_ES
dc.subject Opinion spam es_ES
dc.subject Deceptive opinions es_ES
dc.subject PU-learning es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Detecting Positive and Negative Deceptive Opinions using PU-learning es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.ipm.2014.11.001
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/269180/EU/Web Information Quality Evaluation Initiative/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2012-38603-C02-01/ES/DIANA-APPLICATIONS: FINDING HIDDEN KNOWLEDGE IN TEXTS: APPLICATIONS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Hernández Fusilier, D.; Montes Gómez, M.; Rosso, P.; Guzmán Cabrera, R. (2015). Detecting Positive and Negative Deceptive Opinions using PU-learning. Information Processing and Management. 51(4):433-443. https://doi.org/10.1016/j.ipm.2014.11.001 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.ipm.2014.11.001 es_ES
dc.description.upvformatpinicio 433 es_ES
dc.description.upvformatpfin 443 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 51 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 306221 es_ES
dc.contributor.funder European Commission
dc.contributor.funder Ministerio de Economía y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem