- -

Influence of Dopant Loading on the Photo- and Electrochemical Properties of (N, O)-Co-doped Graphene

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of Dopant Loading on the Photo- and Electrochemical Properties of (N, O)-Co-doped Graphene

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Baldoví, Hermenegildo G. es_ES
dc.contributor.author Albarracín Sánchez, Ferran es_ES
dc.contributor.author Alvaro Rodríguez, Maria Mercedes es_ES
dc.contributor.author Ferrer Ribera, Rosa Belén es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2016-05-26T09:16:43Z
dc.date.issued 2015
dc.identifier.issn 1439-7641
dc.identifier.uri http://hdl.handle.net/10251/64757
dc.description.abstract A series of (N, O)-co-doped graphenes with different N and O loadings are prepared by the pyrolysis of natural chitosan. When the percentage of dopant increases, the conductionband potential and charge-separation quantum yield increase, whereas the charge-separation lifetime decreases. es_ES
dc.description.sponsorship Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa, CTQ2010-18671 and CTQ2012-32315) and Generalidad Valenciana (Prometeo 2012-019) is gratefully acknowledged. en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof ChemPhysChem es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nitrogen oxygen codoped graphene es_ES
dc.subject Photochem electrochem property es_ES
dc.subject doped graphene es_ES
dc.subject conduction band potential es_ES
dc.subject photochemistry es_ES
dc.subject photoelectron spectroscopy es_ES
dc.subject photophysical properties es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Influence of Dopant Loading on the Photo- and Electrochemical Properties of (N, O)-Co-doped Graphene es_ES
dc.type Artículo es_ES
dc.embargo.lift 10000-01-01
dc.embargo.terms forever es_ES
dc.identifier.doi 10.1002/cphc.201500306
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2010-18671/ES/APLICACION DE SOLIDOS RETICULARES METAL-ORGANICO MODIFICADOS COMO CATALIZADORES HETEROGENEOS EN PROCESOS DE OXIDACION AEROBICA Y EN REACCIONES PROMOVIDAS POR ACIDOS DE LEWIS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Baldoví, HG.; Albarracín Sánchez, F.; Alvaro Rodríguez, MM.; Ferrer Ribera, RB.; García Gómez, H. (2015). Influence of Dopant Loading on the Photo- and Electrochemical Properties of (N, O)-Co-doped Graphene. ChemPhysChem. 16(10):2094-2098. doi:10.1002/cphc.201500306 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1002/cphc.201500306 es_ES
dc.description.upvformatpinicio 2094 es_ES
dc.description.upvformatpfin 2098 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16 es_ES
dc.description.issue 10 es_ES
dc.relation.senia 298324 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Young, R. J., Kinloch, I. A., Gong, L., & Novoselov, K. S. (2012). The mechanics of graphene nanocomposites: A review. Composites Science and Technology, 72(12), 1459-1476. doi:10.1016/j.compscitech.2012.05.005 es_ES
dc.description.references Wang, S. J., Geng, Y., Zheng, Q., & Kim, J.-K. (2010). Fabrication of highly conducting and transparent graphene films. Carbon, 48(6), 1815-1823. doi:10.1016/j.carbon.2010.01.027 es_ES
dc.description.references Zeng, F., Sun, Z., Sang, X., Diamond, D., Lau, K. T., Liu, X., & Su, D. S. (2011). In Situ One-Step Electrochemical Preparation of Graphene Oxide Nanosheet-Modified Electrodes for Biosensors. ChemSusChem, 4(11), 1587-1591. doi:10.1002/cssc.201100319 es_ES
dc.description.references Roche, S. (2010). Graphene gets a better gap. Nature Nanotechnology, 6(1), 8-9. doi:10.1038/nnano.2010.262 es_ES
dc.description.references Gong, Y., Yang, S., Liu, Z., Ma, L., Vajtai, R., & Ajayan, P. M. (2013). Graphene-Network-Backboned Architectures for High-Performance Lithium Storage. Advanced Materials, 25(29), 3979-3984. doi:10.1002/adma.201301051 es_ES
dc.description.references Fan, Z., Zhao, Q., Li, T., Yan, J., Ren, Y., Feng, J., & Wei, T. (2012). Easy synthesis of porous graphene nanosheets and their use in supercapacitors. Carbon, 50(4), 1699-1703. doi:10.1016/j.carbon.2011.12.016 es_ES
dc.description.references Geng, D., Yang, S., Zhang, Y., Yang, J., Liu, J., Li, R., … Knights, S. (2011). Nitrogen doping effects on the structure of graphene. Applied Surface Science, 257(21), 9193-9198. doi:10.1016/j.apsusc.2011.05.131 es_ES
dc.description.references Cao, H., Zhou, X., Qin, Z., & Liu, Z. (2013). Low-temperature preparation of nitrogen-doped graphene for supercapacitors. Carbon, 56, 218-223. doi:10.1016/j.carbon.2013.01.005 es_ES
dc.description.references Mehrali, M., Sadeghinezhad, E., Tahan Latibari, S., Mehrali, M., Togun, H., Zubir, M. N. M., … Metselaar, H. S. C. (2014). Preparation, characterization, viscosity, and thermal conductivity of nitrogen-doped graphene aqueous nanofluids. Journal of Materials Science, 49(20), 7156-7171. doi:10.1007/s10853-014-8424-8 es_ES
dc.description.references Rani, P., & Jindal, V. K. (2013). Designing band gap of graphene by B and N dopant atoms. RSC Adv., 3(3), 802-812. doi:10.1039/c2ra22664b es_ES
dc.description.references Jeong, H. M., Lee, J. W., Shin, W. H., Choi, Y. J., Shin, H. J., Kang, J. K., & Choi, J. W. (2011). Nitrogen-Doped Graphene for High-Performance Ultracapacitors and the Importance of Nitrogen-Doped Sites at Basal Planes. Nano Letters, 11(6), 2472-2477. doi:10.1021/nl2009058 es_ES
dc.description.references Zhang, C., Fu, L., Liu, N., Liu, M., Wang, Y., & Liu, Z. (2011). Synthesis of Nitrogen-Doped Graphene Using Embedded Carbon and Nitrogen Sources. Advanced Materials, 23(8), 1020-1024. doi:10.1002/adma.201004110 es_ES
dc.description.references Li, N., Wang, Z., Zhao, K., Shi, Z., Gu, Z., & Xu, S. (2010). Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method. Carbon, 48(1), 255-259. doi:10.1016/j.carbon.2009.09.013 es_ES
dc.description.references Moon, J., An, J., Sim, U., Cho, S.-P., Kang, J. H., Chung, C., … Hong, B. H. (2014). One-Step Synthesis of N-doped Graphene Quantum Sheets from Monolayer Graphene by Nitrogen Plasma. Advanced Materials, 26(21), 3501-3505. doi:10.1002/adma.201306287 es_ES
dc.description.references Park, S. H., Chae, J., Cho, M.-H., Kim, J. H., Yoo, K.-H., Cho, S. W., … Kim, J. W. (2014). High concentration of nitrogen doped into graphene using N2plasma with an aluminum oxide buffer layer. J. Mater. Chem. C, 2(5), 933-939. doi:10.1039/c3tc31773k es_ES
dc.description.references Jin, H., Wang, X., Gu, Z., Fan, Q., & Luo, B. (2015). A facile method for preparing nitrogen-doped graphene and its application in supercapacitors. Journal of Power Sources, 273, 1156-1162. doi:10.1016/j.jpowsour.2014.10.010 es_ES
dc.description.references Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M., & García, H. (2012). From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 48(74), 9254. doi:10.1039/c2cc34978g es_ES
dc.description.references Primo, A., & Quignard, F. (2010). Chitosan as efficient porous support for dispersion of highly active gold nanoparticles: design of hybrid catalyst for carbon–carbon bond formation. Chemical Communications, 46(30), 5593. doi:10.1039/c0cc01137a es_ES
dc.description.references Chtchigrovsky, M., Primo, A., Gonzalez, P., Molvinger, K., Robitzer, M., Quignard, F., & Taran, F. (2009). Functionalized Chitosan as a Green, Recyclable, Biopolymer-Supported Catalyst for the [3+2] Huisgen Cycloaddition. Angewandte Chemie, 121(32), 6030-6034. doi:10.1002/ange.200901309 es_ES
dc.description.references Titantah, J. T., & Lamoen, D. (2007). Carbon and nitrogen 1s energy levels in amorphous carbon nitride systems: XPS interpretation using first-principles. Diamond and Related Materials, 16(3), 581-588. doi:10.1016/j.diamond.2006.11.048 es_ES
dc.description.references Arenillas, A., Drage, T. C., Smith, K., & Snape, C. E. (2005). CO2 removal potential of carbons prepared by co-pyrolysis of sugar and nitrogen containing compounds. Journal of Analytical and Applied Pyrolysis, 74(1-2), 298-306. doi:10.1016/j.jaap.2004.11.020 es_ES
dc.description.references Wei, D., Liu, Y., Wang, Y., Zhang, H., Huang, L., & Yu, G. (2009). Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties. Nano Letters, 9(5), 1752-1758. doi:10.1021/nl803279t es_ES
dc.description.references De Miguel, M., Álvaro, M., & García, H. (2012). Graphene as a Quencher of Electronic Excited States of Photochemical Probes. Langmuir, 28(5), 2849-2857. doi:10.1021/la204023w es_ES
dc.description.references Atienzar, P., Primo, A., Lavorato, C., Molinari, R., & García, H. (2013). Preparation of Graphene Quantum Dots from Pyrolyzed Alginate. Langmuir, 29(20), 6141-6146. doi:10.1021/la400618s es_ES
dc.description.references Lavorato, C., Primo, A., Molinari, R., & Garcia, H. (2013). N-Doped Graphene Derived from Biomass as a Visible-Light Photocatalyst for Hydrogen Generation from Water/Methanol Mixtures. Chemistry - A European Journal, 20(1), 187-194. doi:10.1002/chem.201303689 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem