- -

Steric-shielding vs sigma-pi orbital interactions in triplet-triplet energy transfer

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Steric-shielding vs sigma-pi orbital interactions in triplet-triplet energy transfer

Show simple item record

Files in this item

dc.contributor.author Andreu Ros, María Inmaculada es_ES
dc.contributor.author Morera Bertomeu, Isabel María es_ES
dc.contributor.author Palumbo, Fabrizio es_ES
dc.contributor.author Sastre Navarro, German Ignacio es_ES
dc.contributor.author Bosca Mayans, Francisco es_ES
dc.contributor.author Miranda Alonso, Miguel Ángel es_ES
dc.date.accessioned 2016-05-26T10:43:45Z
dc.date.available 2016-05-26T10:43:45Z
dc.date.issued 2015
dc.identifier.issn 2041-6520
dc.identifier.uri http://hdl.handle.net/10251/64783
dc.description.abstract he influence of non-covalent σ–π orbital interactions on triplet–triplet energy transfer (TTET) through tuning of the donor excitation energy remains basically unexplored. In the present work, we have investigated intermolecular TTET using donor moieties covalently linked to a rigid cholesterol (Ch) scaffold. For this purpose, diaryl ketones of π,π* electronic configuration tethered to α- or β-Ch were prepared from tiaprofenic acid (TPA) and suprofen (SUP). The obtained systems TPA-α-Ch, TPA-β-Ch, SUP-α-Ch and SUP-β-Ch were submitted to photophysical studies (laser flash photolysis and phosphorescence), in order to delineate the influence of steric shielding and σ–π orbital interactions on the rate of TTET to a series of energy acceptors. As a matter of fact, fine tuning of the donor triplet energy significantly modifies the rate constants of TTET in the absence of diffusion control. The experimental results are rationalized by means of theoretical calculations using first principles methods based on DFT as well as molecular dynamics. es_ES
dc.description.sponsorship Financial support from the Generalitat Valenciana (Prometeo Program), the Spanish Government (CTQ2010-19909, SEV-2012-0267 and FPU fellowship for F.P.) and the Carlos III Institute of Health (Grant RIRAAF, RETICS program and Miguel Servet Contract CP11/00154 for I. A.) is gratefully acknowledged. We thank ASIC-UPV for computing time. Dedicated to Prof. Diego Cortes on the occasion of his 60th birthday. en_EN
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry: Chemical Science es_ES
dc.relation.ispartof Chemical Science es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject DENSITY FUNCTIONALS es_ES
dc.subject MOLECULAR-DYNAMICS es_ES
dc.subject PULSE-RADIOLYSIS es_ES
dc.subject SYSTEMS es_ES
dc.subject STATE es_ES
dc.subject ABSORPTION es_ES
dc.subject SIMULATION es_ES
dc.subject SPECTRA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Steric-shielding vs sigma-pi orbital interactions in triplet-triplet energy transfer es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c5sc00823a
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2010-19909/ES/MECANISMOS IMPLICADOS EN LA FOTO-REACTIVIDAD ENTRE FARMACOS CON PROPIEDADES ANTINEOPLASICAS Y SUS BIOMOLECULAS DIANA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CP11%2F00154/ES/CP11%2F00154/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Andreu Ros, MI.; Morera Bertomeu, IM.; Palumbo, F.; Sastre Navarro, GI.; Bosca Mayans, F.; Miranda Alonso, MÁ. (2015). Steric-shielding vs sigma-pi orbital interactions in triplet-triplet energy transfer. Chemical Science. 6(7):4035-4041. https://doi.org/10.1039/c5sc00823a es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/c5sc00823a es_ES
dc.description.upvformatpinicio 4035 es_ES
dc.description.upvformatpfin 4041 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 7 es_ES
dc.relation.senia 297114 es_ES
dc.identifier.eissn 2041-6539
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Baldo, M. A., & Forrest, S. R. (2000). Transient analysis of organic electrophosphorescence: I. Transient analysis of triplet energy transfer. Physical Review B, 62(16), 10958-10966. doi:10.1103/physrevb.62.10958 es_ES
dc.description.references Scaiano, J. C., Leigh, W., Meador, M. A., & Wagner, P. J. (1985). Sterically hindered triplet energy transfer. Journal of the American Chemical Society, 107(20), 5806-5807. doi:10.1021/ja00306a041 es_ES
dc.description.references Scholes, G. D. (2003). LONG-RANGERESONANCEENERGYTRANSFER INMOLECULARSYSTEMS. Annual Review of Physical Chemistry, 54(1), 57-87. doi:10.1146/annurev.physchem.54.011002.103746 es_ES
dc.description.references Beljonne, D., Curutchet, C., Scholes, G. D., & Silbey, R. J. (2009). Beyond Förster Resonance Energy Transfer in Biological and Nanoscale Systems. The Journal of Physical Chemistry B, 113(19), 6583-6599. doi:10.1021/jp900708f es_ES
dc.description.references Andreu, I., Boscá, F., Sanchez, L., Morera, I. M., Camps, P., & Miranda, M. A. (2006). Efficient and Selective Photogeneration of Cholesterol-Derived Radicals by Intramolecular Hydrogen Abstraction in Model Dyads. Organic Letters, 8(20), 4597-4600. doi:10.1021/ol061854c es_ES
dc.description.references Andreu, I., Morera, I. M., Boscá, F., Sanchez, L., Camps, P., & Miranda, M. A. (2008). Cholesterol–diaryl ketone stereoisomeric dyads as models for «clean» type I and type II photooxygenation mechanisms. Organic & Biomolecular Chemistry, 6(5), 860. doi:10.1039/b718068c es_ES
dc.description.references Neshchadin, D., Palumbo, F., Sinicropi, M. S., Andreu, I., Gescheidt, G., & Miranda, M. A. (2013). Topological control in radical reactions of cholesterol in model dyads. Chemical Science, 4(4), 1608. doi:10.1039/c3sc22109a es_ES
dc.description.references Encinas, S., Miranda, M. A., Marconi, G., & Monti, S. (1998). Triplet Photoreactivity of the Diaryl Ketone Tiaprofenic Acid and Its Decarboxylated Photoproduct. Photobiological Implications. Photochemistry and Photobiology, 67(4), 420-425. doi:10.1111/j.1751-1097.1998.tb05221.x es_ES
dc.description.references Arnold, D. R., & Birtwell, R. J. (1973). Photochemical reactivity of some benzoylthiophenes. I. Electronic absorption and emission spectra. Journal of the American Chemical Society, 95(14), 4599-4606. doi:10.1021/ja00795a023 es_ES
dc.description.references Bosca, F., Lhiaubet-Vallet, V., Cuquerella, M. C., Castell, J. V., & Miranda, M. A. (2006). The Triplet Energy of Thymine in DNA. Journal of the American Chemical Society, 128(19), 6318-6319. doi:10.1021/ja060651g es_ES
dc.description.references Heinrich, G., & Güsten, H. (1979). Deuterium-Isotopieeffekt auf die strahlende und strahlungslose Desaktivierung von Triplettzuständen polycyclischer aromatischer Kohlenwasserstoffe. Zeitschrift für Physikalische Chemie, 118(1), 31-41. doi:10.1524/zpch.1979.118.1.031 es_ES
dc.description.references Martínez, L. J., & Scaiano, J. C. (1998). Characterization of the Transient Intermediates Generated from the Photoexcitation of Nabumetone: A Comparison with Naproxen. Photochemistry and Photobiology, 68(5), 646-651. doi:10.1111/j.1751-1097.1998.tb02524.x es_ES
dc.description.references Gorman, A. A., Hamblett, I., Irvine, M., Raby, P., Standen, M. C., & Yeates, S. (1985). Pulse radiolysis study of the cycloheptatriene triplet state: lifetime, relaxation and nonvertical excitation. Journal of the American Chemical Society, 107(15), 4404-4411. doi:10.1021/ja00301a006 es_ES
dc.description.references Gorman, A. A., Hamblett, I., & Harrison, R. J. (1984). Pulse radiolysis study of the azulene triplet state. Journal of the American Chemical Society, 106(23), 6952-6955. doi:10.1021/ja00335a013 es_ES
dc.description.references Carmichael, I., & Hug, G. L. (1986). Triplet–Triplet Absorption Spectra of Organic Molecules in Condensed Phases. Journal of Physical and Chemical Reference Data, 15(1), 1-250. doi:10.1063/1.555770 es_ES
dc.description.references Sandros, K., Haglid, F., Ryhage, R., Ryhage, R., & Stevens, R. (1964). Transfer of Triplet State Energy in Fluid Solutions. III. Reversible Energy Transfer. Acta Chemica Scandinavica, 18, 2355-2374. doi:10.3891/acta.chem.scand.18-2355 es_ES
dc.description.references Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/physrevlett.77.3865 es_ES
dc.description.references Zhao, Y., & Truhlar, D. G. (2007). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 120(1-3), 215-241. doi:10.1007/s00214-007-0310-x es_ES
dc.description.references Chai, J.-D., & Head-Gordon, M. (2008). Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Physical Chemistry Chemical Physics, 10(44), 6615. doi:10.1039/b810189b es_ES
dc.description.references M. J. Frisch , G. W.Trucks, H. B.Schlegel, G. E.Scuseria, M. A.Robb, J. R.Cheeseman, G.Scalmani, V.Barone, B.Mennucci, G. A.Petersson, H.Nakatsuji, M.Caricato, X.Li, H. P.Hratchian, A. F.Izmaylov, J.Bloino, G.Zheng, J. L.Sonnenberg, M.Hada, M.Ehara, K.Toyota, R.Fukuda, J.Hasegawa, M.Ishida, T.Nakajima, Y.Honda, O.Kitao, H.Nakai, T.Vreven, J. A.Montgomery Jr, J. E.Peralta, F.Ogliaro, M. J.Bearpark, J.Heyd, E. N.Brothers, K. N.Kudin, V. N.Staroverov, R.Kobayashi, J.Normand, K.Raghavachari, A. P.Rendell, J. C.Burant, S. S.Iyengar, J.Tomasi, M.Cossi, N.Rega, N. J.Millam, M.Klene, J. E.Knox, J. B.Cross, V.Bakken, C.Adamo, J.Jaramillo, R.Gomperts, R. E.Stratmann, O.Yazyev, A. J.Austin, R.Cammi, C.Pomelli, J. W.Ochterski, R. L.Martin, K.Morokuma, V. G.Zakrzewski, G. A.Voth, P.Salvador, J. J.Dannenberg, S.Dapprich, A. D.Daniels, Ö.Farkas, J. B.Foresman, J. V.Ortiz, J.Cioslowski and D. J.Fox, Gaussian 09, Revision D.01, Inc., Wallingford, CT, USA, 2009 es_ES
dc.description.references Jacquemin, D., Perpète, E. A., Ciofini, I., & Adamo, C. (2010). Assessment of Functionals for TD-DFT Calculations of Singlet−Triplet Transitions. Journal of Chemical Theory and Computation, 6(5), 1532-1537. doi:10.1021/ct100005d es_ES
dc.description.references Oie, T., Maggiora, G. M., Christoffersen, R. E., & Duchamp, D. J. (1981). Development of a flexible intra- and intermolecular empirical potential function for large molecular systems. International Journal of Quantum Chemistry, 20(S8), 1-47. doi:10.1002/qua.560200703 es_ES
dc.description.references Smith, W., & Forester, T. R. (1996). DL_POLY_2.0: A general-purpose parallel molecular dynamics simulation package. Journal of Molecular Graphics, 14(3), 136-141. doi:10.1016/s0263-7855(96)00043-4 es_ES
dc.description.references Smith, W., Yong, C. W., & Rodger, P. M. (2002). DL_POLY: Application to molecular simulation. Molecular Simulation, 28(5), 385-471. doi:10.1080/08927020290018769 es_ES
dc.description.references LLOPIS, F., SASTRE, G., & CORMA, A. (2006). Isomerization and disproportionation of m-xylene in a zeolite with 9- and 10-membered ring pores: Molecular dynamics and catalytic studies. Journal of Catalysis, 242(1), 195-206. doi:10.1016/j.jcat.2006.05.034 es_ES


This item appears in the following Collection(s)

Show simple item record