- -

Steric-shielding vs sigma-pi orbital interactions in triplet-triplet energy transfer

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Steric-shielding vs sigma-pi orbital interactions in triplet-triplet energy transfer

Mostrar el registro completo del ítem

Andreu Ros, MI.; Morera Bertomeu, IM.; Palumbo, F.; Sastre Navarro, GI.; Bosca Mayans, F.; Miranda Alonso, MÁ. (2015). Steric-shielding vs sigma-pi orbital interactions in triplet-triplet energy transfer. Chemical Science. 6(7):4035-4041. https://doi.org/10.1039/c5sc00823a

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/64783

Ficheros en el ítem

Metadatos del ítem

Título: Steric-shielding vs sigma-pi orbital interactions in triplet-triplet energy transfer
Autor: Andreu Ros, María Inmaculada Morera Bertomeu, Isabel María Palumbo, Fabrizio Sastre Navarro, German Ignacio Bosca Mayans, Francisco Miranda Alonso, Miguel Ángel
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
he influence of non-covalent σ–π orbital interactions on triplet–triplet energy transfer (TTET) through tuning of the donor excitation energy remains basically unexplored. In the present work, we have investigated ...[+]
Palabras clave: DENSITY FUNCTIONALS , MOLECULAR-DYNAMICS , PULSE-RADIOLYSIS , SYSTEMS , STATE , ABSORPTION , SIMULATION , SPECTRA
Derechos de uso: Reconocimiento (by)
Fuente:
Chemical Science. (issn: 2041-6520 ) (eissn: 2041-6539 )
DOI: 10.1039/c5sc00823a
Editorial:
Royal Society of Chemistry: Chemical Science
Versión del editor: http://dx.doi.org/10.1039/c5sc00823a
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//CTQ2010-19909/ES/MECANISMOS IMPLICADOS EN LA FOTO-REACTIVIDAD ENTRE FARMACOS CON PROPIEDADES ANTINEOPLASICAS Y SUS BIOMOLECULAS DIANA/
info:eu-repo/grantAgreement/MICINN//CP11%2F00154/ES/CP11%2F00154/
Agradecimientos:
Financial support from the Generalitat Valenciana (Prometeo Program), the Spanish Government (CTQ2010-19909, SEV-2012-0267 and FPU fellowship for F.P.) and the Carlos III Institute of Health (Grant RIRAAF, RETICS program ...[+]
Tipo: Artículo

References

Baldo, M. A., & Forrest, S. R. (2000). Transient analysis of organic electrophosphorescence: I. Transient analysis of triplet energy transfer. Physical Review B, 62(16), 10958-10966. doi:10.1103/physrevb.62.10958

Scaiano, J. C., Leigh, W., Meador, M. A., & Wagner, P. J. (1985). Sterically hindered triplet energy transfer. Journal of the American Chemical Society, 107(20), 5806-5807. doi:10.1021/ja00306a041

Scholes, G. D. (2003). LONG-RANGERESONANCEENERGYTRANSFER INMOLECULARSYSTEMS. Annual Review of Physical Chemistry, 54(1), 57-87. doi:10.1146/annurev.physchem.54.011002.103746 [+]
Baldo, M. A., & Forrest, S. R. (2000). Transient analysis of organic electrophosphorescence: I. Transient analysis of triplet energy transfer. Physical Review B, 62(16), 10958-10966. doi:10.1103/physrevb.62.10958

Scaiano, J. C., Leigh, W., Meador, M. A., & Wagner, P. J. (1985). Sterically hindered triplet energy transfer. Journal of the American Chemical Society, 107(20), 5806-5807. doi:10.1021/ja00306a041

Scholes, G. D. (2003). LONG-RANGERESONANCEENERGYTRANSFER INMOLECULARSYSTEMS. Annual Review of Physical Chemistry, 54(1), 57-87. doi:10.1146/annurev.physchem.54.011002.103746

Beljonne, D., Curutchet, C., Scholes, G. D., & Silbey, R. J. (2009). Beyond Förster Resonance Energy Transfer in Biological and Nanoscale Systems. The Journal of Physical Chemistry B, 113(19), 6583-6599. doi:10.1021/jp900708f

Andreu, I., Boscá, F., Sanchez, L., Morera, I. M., Camps, P., & Miranda, M. A. (2006). Efficient and Selective Photogeneration of Cholesterol-Derived Radicals by Intramolecular Hydrogen Abstraction in Model Dyads. Organic Letters, 8(20), 4597-4600. doi:10.1021/ol061854c

Andreu, I., Morera, I. M., Boscá, F., Sanchez, L., Camps, P., & Miranda, M. A. (2008). Cholesterol–diaryl ketone stereoisomeric dyads as models for «clean» type I and type II photooxygenation mechanisms. Organic & Biomolecular Chemistry, 6(5), 860. doi:10.1039/b718068c

Neshchadin, D., Palumbo, F., Sinicropi, M. S., Andreu, I., Gescheidt, G., & Miranda, M. A. (2013). Topological control in radical reactions of cholesterol in model dyads. Chemical Science, 4(4), 1608. doi:10.1039/c3sc22109a

Encinas, S., Miranda, M. A., Marconi, G., & Monti, S. (1998). Triplet Photoreactivity of the Diaryl Ketone Tiaprofenic Acid and Its Decarboxylated Photoproduct. Photobiological Implications. Photochemistry and Photobiology, 67(4), 420-425. doi:10.1111/j.1751-1097.1998.tb05221.x

Arnold, D. R., & Birtwell, R. J. (1973). Photochemical reactivity of some benzoylthiophenes. I. Electronic absorption and emission spectra. Journal of the American Chemical Society, 95(14), 4599-4606. doi:10.1021/ja00795a023

Bosca, F., Lhiaubet-Vallet, V., Cuquerella, M. C., Castell, J. V., & Miranda, M. A. (2006). The Triplet Energy of Thymine in DNA. Journal of the American Chemical Society, 128(19), 6318-6319. doi:10.1021/ja060651g

Heinrich, G., & Güsten, H. (1979). Deuterium-Isotopieeffekt auf die strahlende und strahlungslose Desaktivierung von Triplettzuständen polycyclischer aromatischer Kohlenwasserstoffe. Zeitschrift für Physikalische Chemie, 118(1), 31-41. doi:10.1524/zpch.1979.118.1.031

Martínez, L. J., & Scaiano, J. C. (1998). Characterization of the Transient Intermediates Generated from the Photoexcitation of Nabumetone: A Comparison with Naproxen. Photochemistry and Photobiology, 68(5), 646-651. doi:10.1111/j.1751-1097.1998.tb02524.x

Gorman, A. A., Hamblett, I., Irvine, M., Raby, P., Standen, M. C., & Yeates, S. (1985). Pulse radiolysis study of the cycloheptatriene triplet state: lifetime, relaxation and nonvertical excitation. Journal of the American Chemical Society, 107(15), 4404-4411. doi:10.1021/ja00301a006

Gorman, A. A., Hamblett, I., & Harrison, R. J. (1984). Pulse radiolysis study of the azulene triplet state. Journal of the American Chemical Society, 106(23), 6952-6955. doi:10.1021/ja00335a013

Carmichael, I., & Hug, G. L. (1986). Triplet–Triplet Absorption Spectra of Organic Molecules in Condensed Phases. Journal of Physical and Chemical Reference Data, 15(1), 1-250. doi:10.1063/1.555770

Sandros, K., Haglid, F., Ryhage, R., Ryhage, R., & Stevens, R. (1964). Transfer of Triplet State Energy in Fluid Solutions. III. Reversible Energy Transfer. Acta Chemica Scandinavica, 18, 2355-2374. doi:10.3891/acta.chem.scand.18-2355

Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/physrevlett.77.3865

Zhao, Y., & Truhlar, D. G. (2007). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 120(1-3), 215-241. doi:10.1007/s00214-007-0310-x

Chai, J.-D., & Head-Gordon, M. (2008). Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Physical Chemistry Chemical Physics, 10(44), 6615. doi:10.1039/b810189b

M. J. Frisch , G. W.Trucks, H. B.Schlegel, G. E.Scuseria, M. A.Robb, J. R.Cheeseman, G.Scalmani, V.Barone, B.Mennucci, G. A.Petersson, H.Nakatsuji, M.Caricato, X.Li, H. P.Hratchian, A. F.Izmaylov, J.Bloino, G.Zheng, J. L.Sonnenberg, M.Hada, M.Ehara, K.Toyota, R.Fukuda, J.Hasegawa, M.Ishida, T.Nakajima, Y.Honda, O.Kitao, H.Nakai, T.Vreven, J. A.Montgomery Jr, J. E.Peralta, F.Ogliaro, M. J.Bearpark, J.Heyd, E. N.Brothers, K. N.Kudin, V. N.Staroverov, R.Kobayashi, J.Normand, K.Raghavachari, A. P.Rendell, J. C.Burant, S. S.Iyengar, J.Tomasi, M.Cossi, N.Rega, N. J.Millam, M.Klene, J. E.Knox, J. B.Cross, V.Bakken, C.Adamo, J.Jaramillo, R.Gomperts, R. E.Stratmann, O.Yazyev, A. J.Austin, R.Cammi, C.Pomelli, J. W.Ochterski, R. L.Martin, K.Morokuma, V. G.Zakrzewski, G. A.Voth, P.Salvador, J. J.Dannenberg, S.Dapprich, A. D.Daniels, Ö.Farkas, J. B.Foresman, J. V.Ortiz, J.Cioslowski and D. J.Fox, Gaussian 09, Revision D.01, Inc., Wallingford, CT, USA, 2009

Jacquemin, D., Perpète, E. A., Ciofini, I., & Adamo, C. (2010). Assessment of Functionals for TD-DFT Calculations of Singlet−Triplet Transitions. Journal of Chemical Theory and Computation, 6(5), 1532-1537. doi:10.1021/ct100005d

Oie, T., Maggiora, G. M., Christoffersen, R. E., & Duchamp, D. J. (1981). Development of a flexible intra- and intermolecular empirical potential function for large molecular systems. International Journal of Quantum Chemistry, 20(S8), 1-47. doi:10.1002/qua.560200703

Smith, W., & Forester, T. R. (1996). DL_POLY_2.0: A general-purpose parallel molecular dynamics simulation package. Journal of Molecular Graphics, 14(3), 136-141. doi:10.1016/s0263-7855(96)00043-4

Smith, W., Yong, C. W., & Rodger, P. M. (2002). DL_POLY: Application to molecular simulation. Molecular Simulation, 28(5), 385-471. doi:10.1080/08927020290018769

LLOPIS, F., SASTRE, G., & CORMA, A. (2006). Isomerization and disproportionation of m-xylene in a zeolite with 9- and 10-membered ring pores: Molecular dynamics and catalytic studies. Journal of Catalysis, 242(1), 195-206. doi:10.1016/j.jcat.2006.05.034

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem