- -

Interconversion algorithm between mechanical and dielectric relaxation measurements for acetate of cis- and trans-2-phenyl-5-hydroxymethyl-1,3-dioxane

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Interconversion algorithm between mechanical and dielectric relaxation measurements for acetate of cis- and trans-2-phenyl-5-hydroxymethyl-1,3-dioxane

Show full item record

Garcia Bernabe, A.; Lidon-Roger, JV.; Sanchis Sánchez, MJ.; Díaz Calleja, R.; Del Castillo, LF. (2015). Interconversion algorithm between mechanical and dielectric relaxation measurements for acetate of cis- and trans-2-phenyl-5-hydroxymethyl-1,3-dioxane. Physical Review E. 92(4). doi:10.1103/PhysRevE.92.042307

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/64801

Files in this item

Item Metadata

Title: Interconversion algorithm between mechanical and dielectric relaxation measurements for acetate of cis- and trans-2-phenyl-5-hydroxymethyl-1,3-dioxane
Author: García Bernabé, Abel Lidon-Roger, Jose V. Sanchis Sánchez, María Jesús Díaz Calleja, Ricardo Del Castillo, Luis Felipe
UPV Unit: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic
Issued date:
Abstract:
The dielectric and mechanical spectroscopies of acetate of cis- and trans-2-phenyl-5-hydroxymethyl-1,3- dioxane are reported in the frequency domain from 10−2 to 106 Hz. This ester has been selected in this study ...[+]
Subjects: GLASS-FORMING LIQUIDS , SUPERCOOLED LIQUIDS , MODEL , HETEROGENEITY , TRANSITION , DIFFUSION , POLYMERS , DYNAMICS , BEHAVIOR
Copyrigths: Reserva de todos los derechos
Source:
Physical Review E. (issn: 1539-3755 ) (eissn: 2470-0053 )
DOI: 10.1103/PhysRevE.92.042307
Publisher:
American Physical Society
Publisher version: http://dx.doi.org/10.1103/PhysRevE.92.042307
Project ID:
DGAPA-UNAM Project IG-100315 SEP-CONACYT 154626
CICYT MAT2012-3383
Thanks:
The authors thank Professor Niels Boye Olsen and Jeppe C. Dyre from Roskilde Universitetcenter (Denmark) for dielectric and mechanical measurements. This work was supported by DGAPA-UNAM Projects No. IG-100315, SEP-CONACYT ...[+]
Type: Artículo

References

Gemant, A. (1935). The conception of a complex viscosity and its application to dielectrics. Transactions of the Faraday Society, 31, 1582. doi:10.1039/tf9353101582

DiMarzio, E. A., & Bishop, M. (1974). Connection between the macroscopic electric and mechanical susceptibilities. The Journal of Chemical Physics, 60(10), 3802-3811. doi:10.1063/1.1680822

Bird, R. B., & Giacomin, A. J. (2012). Who conceived the «complex viscosity»? Rheologica Acta, 51(6), 481-486. doi:10.1007/s00397-012-0621-2 [+]
Gemant, A. (1935). The conception of a complex viscosity and its application to dielectrics. Transactions of the Faraday Society, 31, 1582. doi:10.1039/tf9353101582

DiMarzio, E. A., & Bishop, M. (1974). Connection between the macroscopic electric and mechanical susceptibilities. The Journal of Chemical Physics, 60(10), 3802-3811. doi:10.1063/1.1680822

Bird, R. B., & Giacomin, A. J. (2012). Who conceived the «complex viscosity»? Rheologica Acta, 51(6), 481-486. doi:10.1007/s00397-012-0621-2

Díaz-Calleja, R., Riande, E., & Román, J. S. (1993). Interconversion between mechanical and dielectric relaxations for poly(cyclohexyl acrylate). Journal of Polymer Science Part B: Polymer Physics, 31(6), 711-717. doi:10.1002/polb.1993.090310611

Fatuzzo, E., & Mason, P. R. (1967). A calculation of the complex dielectric constant of a polar liquid by the librating molecule method. Proceedings of the Physical Society, 90(3), 729-740. doi:10.1088/0370-1328/90/3/318

Zorn, R., Mopsik, F. I., McKenna, G. B., Willner, L., & Richter, D. (1997). Dynamics of polybutadienes with different microstructures. 2. Dielectric response and comparisons with rheological behavior. The Journal of Chemical Physics, 107(9), 3645-3655. doi:10.1063/1.474722

Ferri, D., & Castellani, L. (2001). Fine Structure and Thermorheological Complexity of the Softening Dispersion in Styrene-Based Copolymers. Macromolecules, 34(12), 3973-3981. doi:10.1021/ma000328c

Niss, K., Jakobsen, B., & Olsen, N. B. (2005). Dielectric and shear mechanical relaxations in glass-forming liquids: A test of the Gemant-DiMarzio-Bishop model. The Journal of Chemical Physics, 123(23), 234510. doi:10.1063/1.2136886

Christensen, T., & Olsen, N. B. (1994). Comparative measurements of the electrical and shear mechanical response functions in some supercooled liquids. Journal of Non-Crystalline Solids, 172-174, 357-361. doi:10.1016/0022-3093(94)90456-1

Garcia-Bernabé, A., Sanchis, M. J., Díaz-Calleja, R., & del Castillo, L. F. (2009). Fractional Fokker–Planck equation approach for the interconversion between dielectric and mechanical measurements. Journal of Applied Physics, 106(1), 014912. doi:10.1063/1.3158555

Sillescu, H. (1999). Heterogeneity at the glass transition: a review. Journal of Non-Crystalline Solids, 243(2-3), 81-108. doi:10.1016/s0022-3093(98)00831-x

Becker, S. R., Poole, P. H., & Starr, F. W. (2006). Fractional Stokes-Einstein and Debye-Stokes-Einstein Relations in a Network-Forming Liquid. Physical Review Letters, 97(5). doi:10.1103/physrevlett.97.055901

Fujara, F., Geil, B., Sillescu, H., & Fleischer, G. (1992). Translational and rotational diffusion in supercooled orthoterphenyl close to the glass transition. Zeitschrift f�r Physik B Condensed Matter, 88(2), 195-204. doi:10.1007/bf01323572

Glotzer, S. C., Novikov, V. N., & Schrøder, T. B. (2000). Time-dependent, four-point density correlation function description of dynamical heterogeneity and decoupling in supercooled liquids. The Journal of Chemical Physics, 112(2), 509-512. doi:10.1063/1.480541

Nee, T., & Zwanzig, R. (1970). Theory of Dielectric Relaxation in Polar Liquids. The Journal of Chemical Physics, 52(12), 6353-6363. doi:10.1063/1.1672951

Saiz, E., Riande, E., Díaz-Calleja, R., & Guzmán, J. (1997). Molecular Dynamics Simulations of the Time Dependent Dipolar Correlation Function for Esters Containing Substituted 1,3-Dioxacyclohexane Rings in Their Structure. The Journal of Physical Chemistry B, 101(50), 10949-10953. doi:10.1021/jp9717812

Christensen, T., & Olsen, N. B. (1995). A rheometer for the measurement of a high shear modulus covering more than seven decades of frequency below 50 kHz. Review of Scientific Instruments, 66(10), 5019-5031. doi:10.1063/1.1146126

Coelho, R. (1983). Sur la relaxation d’une charge d’espace. Revue de Physique Appliquée, 18(3), 137-146. doi:10.1051/rphysap:01983001803013700

Sørensen, T. S. (1994). Nernst-Planckian Electrodynamics, the Excess Interfacial Impedance, and the Complex Permitivity of Two Semi-infinite Phases and of Lamellar Membranes. Journal of Colloid and Interface Science, 168(2), 437-450. doi:10.1006/jcis.1994.1440

Dyre, J. C. (1988). The random free‐energy barrier model for ac conduction in disordered solids. Journal of Applied Physics, 64(5), 2456-2468. doi:10.1063/1.341681

Havriliak, S., & Negami, S. (1967). A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer, 8, 161-210. doi:10.1016/0032-3861(67)90021-3

Douglas, J. ., & Leporini, D. (1998). Obstruction model of the fractional Stokes–Einstein relation in glass-forming liquids. Journal of Non-Crystalline Solids, 235-237, 137-141. doi:10.1016/s0022-3093(98)00501-8

Heymans, N. (2004). Fractional Calculus Description of Non-Linear Viscoelastic Behaviour of Polymers. Nonlinear Dynamics, 38(1-4), 221-231. doi:10.1007/s11071-004-3757-5

Mazza, M. G., Giovambattista, N., Stanley, H. E., & Starr, F. W. (2007). Connection of translational and rotational dynamical heterogeneities with the breakdown of the Stokes-Einstein and Stokes-Einstein-Debye relations in water. Physical Review E, 76(3). doi:10.1103/physreve.76.031203

[-]

This item appears in the following Collection(s)

Show full item record