- -

On a class of generalised Schmidt groups

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On a class of generalised Schmidt groups

Mostrar el registro completo del ítem

Ballester Bolinches, A.; Esteban Romero, R.; Jiang, Q.; Li, X. (2015). On a class of generalised Schmidt groups. Annali di Matematica Pura ed Applicata. 194(1):77-86. https://doi.org/10.1007/s10231-013-0365-3

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/64841

Ficheros en el ítem

Metadatos del ítem

Título: On a class of generalised Schmidt groups
Autor: Ballester Bolinches, Adolfo Esteban Romero, Ramón Jiang, Qinhui Li, Xianhua
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
In this paper families of non-nilpotent subgroups covering the non-nilpotent part of a finite group are considered. An A 5 -free group possessing one of these families is soluble, and soluble groups with this property have ...[+]
Palabras clave: Finite groups , Nilpotent groups , Maximal subgroups
Derechos de uso: Reserva de todos los derechos
Fuente:
Annali di Matematica Pura ed Applicata. (issn: 0373-3114 )
DOI: 10.1007/s10231-013-0365-3
Editorial:
Springer
Fondazione Annali di Matematica Pura ed Applicata
Versión del editor: http://link.springer.com/article/10.1007%2Fs10231-013-0365-3
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//MTM2010-19938-C03-01/ES/PROPIEDADES ARITMETICAS Y ESTRUCTURALES DE LOS GRUPOS. APLICACIONES I/
info:eu-repo/grantAgreement/China Postdoctoral Science Foundation//20100480582/
info:eu-repo/grantAgreement/NSFC//11101258/
info:eu-repo/grantAgreement/NSFC//11171243/
Descripción: The final publication is available at Springer via http://dx.doi.org/10.1007/s10231-013-0365-3
Agradecimientos:
The first and second authors have been supported by the Research Grant MTM2010-19938-C03-01 from the Ministerio de Ciencia e Innovacion of Spain. The first author has also been supported by a project of the National Natural ...[+]
Tipo: Artículo

References

Asaad, M.: On minimal subgroups of finite groups. Glasg. Math. J. 51, 359–366 (2009)

Asaad, M.: On the solvability of finite groups. Comm. Algebra 37(2), 719–723 (2009)

Ballester-Bolinches, A., Cossey, J., Esteban-Romero, R.: On the abnormal structure of finite groups. Rev. Math. Iberoam. (in press) [+]
Asaad, M.: On minimal subgroups of finite groups. Glasg. Math. J. 51, 359–366 (2009)

Asaad, M.: On the solvability of finite groups. Comm. Algebra 37(2), 719–723 (2009)

Ballester-Bolinches, A., Cossey, J., Esteban-Romero, R.: On the abnormal structure of finite groups. Rev. Math. Iberoam. (in press)

Ballester-Bolinches, A., Ezquerro, L.M.: Classes of finite groups. In: Hazewinkel, M. (ed.) Mathematics and its Applications, vol. 584. Springer, New York (2006)

Beidleman, J.C., Heineken, H.: Minimal non- $${\cal F}$$ F -groups. Ric. Mat. 58(1), 33–41 (2009)

Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of Finite Groups. Oxford University Press, London (1985)

Huppert, B.: Endliche Gruppen I. In: Eckmann, B., van der Waerden, B.L. (eds.) Die Grundlehren der Mathematischen Wissenschaften, vol. 134, Springer, Berlin (1967)

Huppert, B., Blackburn, N.: Finite groups III. In: Eckmann, B., Varadhan, S.R.S. (eds.) Die Grundlehren der Mathematischen Wissenschaften, vol. 243, Springer, Berlin (1982)

Huppert, B., Lempken, W.: Simple groups of order divisible by at most four primes. Izv. Gomel. Gos. Univ. Im. F. Skoriny 3, 64–75 (2000)

Li, C.H., Zhang, H.: The finite primitive groups with soluble stabilizers, and the edge-primitive $$s$$ s -arc transitive graphs. Proc. Lond. Math. Soc. 103(3), 441–472 (2011)

Li, Q., Guo, X.: On generalization of minimal non-nilpotent groups. Lobachevskii J. Math. 31(3), 239–243 (2010)

Li, Q., Guo, X.: On $$p$$ p -nilpotence and solubility of groups. Arch. Math. (Basel) 96, 1–7 (2011)

Lukyanenko, V.O., Netbay, O.V., Skiba, A.N.: Finite groups in which every non-abnormal subgroup is $$X_s$$ X s -permutable. Vetsī Nats. Akad. Navuk Belarusī Ser. Fiz. Mat. Navuk, (4), 25–29 (2009) (Russian). http://nasb.gov.by/rus/publications/vestifm/vfm09_4.php

Rose, J.S.: The influence on a finite group of its proper abnormal structure. J. Lond. Math. Soc. 40, 348–361 (1965)

Schmidt, O.J.: Über Gruppen, deren sämtliche Teiler spezielle Gruppen sind. Mat. Sb. 31, 366–372 (1924)

Skiba, A.N.: On the intersection of all maximal $$\mathfrak{F}$$ F -subgroups of a finite group. J. Algebra 343, 173–182 (2011)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem