- -

Emergent quantum mechanics as a thermal ensemble

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Emergent quantum mechanics as a thermal ensemble

Mostrar el registro completo del ítem

Fernández De Córdoba Castellá, PJ.; Isidro San Juan, JM.; Perea, MH. (2014). Emergent quantum mechanics as a thermal ensemble. International Journal of Geometric Methods in Modern Physics. 11(8):1450068-1450084. doi:10.1142/S0219887814500686

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/64843

Ficheros en el ítem

Metadatos del ítem

Título: Emergent quantum mechanics as a thermal ensemble
Autor: Fernández de Córdoba Castellá, Pedro José Isidro San Juan, José María Perea, Milton Henry
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
It has been argued that gravity acts dissipatively on quantum-mechanical systems, inducing thermal fluctuations that become indistinguishable from quantum fluctuations. This has led some authors to demand that some form ...[+]
Palabras clave: Irreversibility , Emergent quantum mechanics , Gravity
Derechos de uso: Reserva de todos los derechos
Fuente:
International Journal of Geometric Methods in Modern Physics. (issn: 0219-8878 ) (eissn: 1793-6977 )
DOI: 10.1142/S0219887814500686
Editorial:
World Scientific Publishing
Versión del editor: http://dx.doi.org/10.1142/S0219887814500686
Tipo: Artículo

References

ACOSTA, D., FERNÁNDEZ DE CÓRDOBA, P., ISIDRO, J. M., & SANTANDER, J. L. G. (2012). AN ENTROPIC PICTURE OF EMERGENT QUANTUM MECHANICS. International Journal of Geometric Methods in Modern Physics, 09(05), 1250048. doi:10.1142/s021988781250048x

ACOSTA, D., FERNÁNDEZ DE CÓRDOBA, P., ISIDRO, J. M., & SANTANDER, J. L. G. (2013). EMERGENT QUANTUM MECHANICS AS A CLASSICAL, IRREVERSIBLE THERMODYNAMICS. International Journal of Geometric Methods in Modern Physics, 10(04), 1350007. doi:10.1142/s0219887813500072

Adler, S. L. (2004). Quantum Theory as an Emergent Phenomenon. doi:10.1017/cbo9780511535277 [+]
ACOSTA, D., FERNÁNDEZ DE CÓRDOBA, P., ISIDRO, J. M., & SANTANDER, J. L. G. (2012). AN ENTROPIC PICTURE OF EMERGENT QUANTUM MECHANICS. International Journal of Geometric Methods in Modern Physics, 09(05), 1250048. doi:10.1142/s021988781250048x

ACOSTA, D., FERNÁNDEZ DE CÓRDOBA, P., ISIDRO, J. M., & SANTANDER, J. L. G. (2013). EMERGENT QUANTUM MECHANICS AS A CLASSICAL, IRREVERSIBLE THERMODYNAMICS. International Journal of Geometric Methods in Modern Physics, 10(04), 1350007. doi:10.1142/s0219887813500072

Adler, S. L. (2004). Quantum Theory as an Emergent Phenomenon. doi:10.1017/cbo9780511535277

Bertoldi, G., Faraggi, A. E., & Matone, M. (2000). Equivalence principle, higher-dimensional Möbius group and the hidden antisymmetric tensor of quantum mechanics. Classical and Quantum Gravity, 17(19), 3965-4005. doi:10.1088/0264-9381/17/19/302

Blasone, M., Jizba, P., & Scardigli, F. (2009). Can quantum mechanics be an emergent phenomenon? Journal of Physics: Conference Series, 174, 012034. doi:10.1088/1742-6596/174/1/012034

Carroll, R. (2010). On The Emergence Theme Of Physics. doi:10.1142/9789814291804

Caticha, A. (2011). Entropic dynamics, time and quantum theory. Journal of Physics A: Mathematical and Theoretical, 44(22), 225303. doi:10.1088/1751-8113/44/22/225303

Christenson, J. H., Cronin, J. W., Fitch, V. L., & Turlay, R. (1964). Evidence for the2πDecay of theK20Meson. Physical Review Letters, 13(4), 138-140. doi:10.1103/physrevlett.13.138

Connes, A., & Rovelli, C. (1994). Von Neumann algebra automorphisms and time-thermodynamics relation in generally covariant quantum theories. Classical and Quantum Gravity, 11(12), 2899-2917. doi:10.1088/0264-9381/11/12/007

ELZE, H.-T. (2009). THE ATTRACTOR AND THE QUANTUM STATES. International Journal of Quantum Information, 07(supp01), 83-96. doi:10.1142/s0219749909004700

Elze, H.-T. (2009). Symmetry aspects in emergent quantum mechanics. Journal of Physics: Conference Series, 171, 012034. doi:10.1088/1742-6596/171/1/012034

Córdoba, P. F. de, Isidro, J. M., & Perea, M. H. (2013). Emergence from irreversibility. Journal of Physics: Conference Series, 442, 012033. doi:10.1088/1742-6596/442/1/012033

Gambini, R., García-Pintos, L. P., & Pullin, J. (2011). An axiomatic formulation of the Montevideo interpretation of quantum mechanics. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 42(4), 256-263. doi:10.1016/j.shpsb.2011.10.002

GRAY, N., MINIC, D., & PLEIMLING, M. (2013). ON NONEQUILIBRIUM PHYSICS AND STRING THEORY. International Journal of Modern Physics A, 28(07), 1330009. doi:10.1142/s0217751x13300093

Hooft, G. ’t. (1999). Quantum gravity as a dissipative deterministic system. Classical and Quantum Gravity, 16(10), 3263-3279. doi:10.1088/0264-9381/16/10/316

’t Hooft, G., Rajantie, A., Contaldi, C., Dauncey, P., & Stoica, H. (2007). Emergent Quantum Mechanics and Emergent Symmetries. AIP Conference Proceedings. doi:10.1063/1.2823751

HU, B. L. (2011). GRAVITY AND NONEQUILIBRIUM THERMODYNAMICS OF CLASSICAL MATTER. International Journal of Modern Physics D, 20(05), 697-716. doi:10.1142/s0218271811019049

Lees, J. P., Poireau, V., Tisserand, V., Garra Tico, J., Grauges, E., Palano, A., … Kerth, L. T. (2012). Observation of Time-Reversal Violation in theB0Meson System. Physical Review Letters, 109(21). doi:10.1103/physrevlett.109.211801

Onsager, L. (1931). Reciprocal Relations in Irreversible Processes. I. Physical Review, 37(4), 405-426. doi:10.1103/physrev.37.405

Onsager, L., & Machlup, S. (1953). Fluctuations and Irreversible Processes. Physical Review, 91(6), 1505-1512. doi:10.1103/physrev.91.1505

Padmanabhan, T. (2010). Thermodynamical aspects of gravity: new insights. Reports on Progress in Physics, 73(4), 046901. doi:10.1088/0034-4885/73/4/046901

Padmanabhan, T. (2011). Lessons from classical gravity about the quantum structure of spacetime. Journal of Physics: Conference Series, 306, 012001. doi:10.1088/1742-6596/306/1/012001

Penrose, R. (2009). Black holes, quantum theory and cosmology. Journal of Physics: Conference Series, 174, 012001. doi:10.1088/1742-6596/174/1/012001

Rovelli, C. (1993). Statistical mechanics of gravity and the thermodynamical origin of time. Classical and Quantum Gravity, 10(8), 1549-1566. doi:10.1088/0264-9381/10/8/015

Rovelli, C. (1996). Relational quantum mechanics. International Journal of Theoretical Physics, 35(8), 1637-1678. doi:10.1007/bf02302261

Rovelli, C., & Smerlak, M. (2011). Thermal time and Tolman–Ehrenfest effect: ‘temperature as the speed of time’. Classical and Quantum Gravity, 28(7), 075007. doi:10.1088/0264-9381/28/7/075007

Smolin, L. (1986). On the nature of quantum fluctuations and their relation to gravitation and the principle of inertia. Classical and Quantum Gravity, 3(3), 347-359. doi:10.1088/0264-9381/3/3/009

Smolin, L. (1986). Quantum gravity and the statistical interpretation of quantum mechanics. International Journal of Theoretical Physics, 25(3), 215-238. doi:10.1007/bf00668705

Smolin, L. (2012). A Real Ensemble Interpretation of Quantum Mechanics. Foundations of Physics, 42(10), 1239-1261. doi:10.1007/s10701-012-9666-4

Verlinde, E. (2011). On the origin of gravity and the laws of Newton. Journal of High Energy Physics, 2011(4). doi:10.1007/jhep04(2011)029

Wald, R. M. (1980). Quantum gravity and time reversibility. Physical Review D, 21(10), 2742-2755. doi:10.1103/physrevd.21.2742

Wald, R. M. (1999). Gravitation, thermodynamics and quantum theory. Classical and Quantum Gravity, 16(12A), A177-A190. doi:10.1088/0264-9381/16/12a/309

Wetterich, C. (2009). Emergence of quantum mechanics from classical statistics. Journal of Physics: Conference Series, 174, 012008. doi:10.1088/1742-6596/174/1/012008

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem