Mostrar el registro sencillo del ítem
dc.contributor.author | Fernández de Córdoba Castellá, Pedro José | es_ES |
dc.contributor.author | Isidro San Juan, José María | es_ES |
dc.contributor.author | Perea, Milton Henry | es_ES |
dc.date.accessioned | 2016-05-27T10:12:18Z | |
dc.date.available | 2016-05-27T10:12:18Z | |
dc.date.issued | 2014-09 | |
dc.identifier.issn | 0219-8878 | |
dc.identifier.uri | http://hdl.handle.net/10251/64843 | |
dc.description.abstract | It has been argued that gravity acts dissipatively on quantum-mechanical systems, inducing thermal fluctuations that become indistinguishable from quantum fluctuations. This has led some authors to demand that some form of time irreversibility be incorporated into the formalism of quantum mechanics. As a tool toward this goal, we propose a thermodynamical approach to quantum mechanics, based on Onsager s classical theory of irreversible processes and Prigogine s nonunitary transformation theory. An entropy operator replaces the Hamiltonian as the generator of evolution. The canonically conjugate variable corresponding to the entropy is a dimensionless evolution parameter. Contrary to the Hamiltonian, the entropy operator is not a conserved Noether charge. Our construction succeeds in implementing gravitationally-induced irreversibility in the quantum theory. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | World Scientific Publishing | es_ES |
dc.relation.ispartof | International Journal of Geometric Methods in Modern Physics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Irreversibility | es_ES |
dc.subject | Emergent quantum mechanics | es_ES |
dc.subject | Gravity | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Emergent quantum mechanics as a thermal ensemble | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1142/S0219887814500686 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Fernández De Córdoba Castellá, PJ.; Isidro San Juan, JM.; Perea, MH. (2014). Emergent quantum mechanics as a thermal ensemble. International Journal of Geometric Methods in Modern Physics. 11(8):1450068-1450084. doi:10.1142/S0219887814500686 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1142/S0219887814500686 | es_ES |
dc.description.upvformatpinicio | 1450068 | es_ES |
dc.description.upvformatpfin | 1450084 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 8 | es_ES |
dc.relation.senia | 268993 | es_ES |
dc.identifier.eissn | 1793-6977 | |
dc.description.references | ACOSTA, D., FERNÁNDEZ DE CÓRDOBA, P., ISIDRO, J. M., & SANTANDER, J. L. G. (2012). AN ENTROPIC PICTURE OF EMERGENT QUANTUM MECHANICS. International Journal of Geometric Methods in Modern Physics, 09(05), 1250048. doi:10.1142/s021988781250048x | es_ES |
dc.description.references | ACOSTA, D., FERNÁNDEZ DE CÓRDOBA, P., ISIDRO, J. M., & SANTANDER, J. L. G. (2013). EMERGENT QUANTUM MECHANICS AS A CLASSICAL, IRREVERSIBLE THERMODYNAMICS. International Journal of Geometric Methods in Modern Physics, 10(04), 1350007. doi:10.1142/s0219887813500072 | es_ES |
dc.description.references | Adler, S. L. (2004). Quantum Theory as an Emergent Phenomenon. doi:10.1017/cbo9780511535277 | es_ES |
dc.description.references | Bertoldi, G., Faraggi, A. E., & Matone, M. (2000). Equivalence principle, higher-dimensional Möbius group and the hidden antisymmetric tensor of quantum mechanics. Classical and Quantum Gravity, 17(19), 3965-4005. doi:10.1088/0264-9381/17/19/302 | es_ES |
dc.description.references | Blasone, M., Jizba, P., & Scardigli, F. (2009). Can quantum mechanics be an emergent phenomenon? Journal of Physics: Conference Series, 174, 012034. doi:10.1088/1742-6596/174/1/012034 | es_ES |
dc.description.references | Carroll, R. (2010). On The Emergence Theme Of Physics. doi:10.1142/9789814291804 | es_ES |
dc.description.references | Caticha, A. (2011). Entropic dynamics, time and quantum theory. Journal of Physics A: Mathematical and Theoretical, 44(22), 225303. doi:10.1088/1751-8113/44/22/225303 | es_ES |
dc.description.references | Christenson, J. H., Cronin, J. W., Fitch, V. L., & Turlay, R. (1964). Evidence for the2πDecay of theK20Meson. Physical Review Letters, 13(4), 138-140. doi:10.1103/physrevlett.13.138 | es_ES |
dc.description.references | Connes, A., & Rovelli, C. (1994). Von Neumann algebra automorphisms and time-thermodynamics relation in generally covariant quantum theories. Classical and Quantum Gravity, 11(12), 2899-2917. doi:10.1088/0264-9381/11/12/007 | es_ES |
dc.description.references | ELZE, H.-T. (2009). THE ATTRACTOR AND THE QUANTUM STATES. International Journal of Quantum Information, 07(supp01), 83-96. doi:10.1142/s0219749909004700 | es_ES |
dc.description.references | Elze, H.-T. (2009). Symmetry aspects in emergent quantum mechanics. Journal of Physics: Conference Series, 171, 012034. doi:10.1088/1742-6596/171/1/012034 | es_ES |
dc.description.references | Córdoba, P. F. de, Isidro, J. M., & Perea, M. H. (2013). Emergence from irreversibility. Journal of Physics: Conference Series, 442, 012033. doi:10.1088/1742-6596/442/1/012033 | es_ES |
dc.description.references | Gambini, R., García-Pintos, L. P., & Pullin, J. (2011). An axiomatic formulation of the Montevideo interpretation of quantum mechanics. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 42(4), 256-263. doi:10.1016/j.shpsb.2011.10.002 | es_ES |
dc.description.references | GRAY, N., MINIC, D., & PLEIMLING, M. (2013). ON NONEQUILIBRIUM PHYSICS AND STRING THEORY. International Journal of Modern Physics A, 28(07), 1330009. doi:10.1142/s0217751x13300093 | es_ES |
dc.description.references | Hooft, G. ’t. (1999). Quantum gravity as a dissipative deterministic system. Classical and Quantum Gravity, 16(10), 3263-3279. doi:10.1088/0264-9381/16/10/316 | es_ES |
dc.description.references | ’t Hooft, G., Rajantie, A., Contaldi, C., Dauncey, P., & Stoica, H. (2007). Emergent Quantum Mechanics and Emergent Symmetries. AIP Conference Proceedings. doi:10.1063/1.2823751 | es_ES |
dc.description.references | HU, B. L. (2011). GRAVITY AND NONEQUILIBRIUM THERMODYNAMICS OF CLASSICAL MATTER. International Journal of Modern Physics D, 20(05), 697-716. doi:10.1142/s0218271811019049 | es_ES |
dc.description.references | Lees, J. P., Poireau, V., Tisserand, V., Garra Tico, J., Grauges, E., Palano, A., … Kerth, L. T. (2012). Observation of Time-Reversal Violation in theB0Meson System. Physical Review Letters, 109(21). doi:10.1103/physrevlett.109.211801 | es_ES |
dc.description.references | Onsager, L. (1931). Reciprocal Relations in Irreversible Processes. I. Physical Review, 37(4), 405-426. doi:10.1103/physrev.37.405 | es_ES |
dc.description.references | Onsager, L., & Machlup, S. (1953). Fluctuations and Irreversible Processes. Physical Review, 91(6), 1505-1512. doi:10.1103/physrev.91.1505 | es_ES |
dc.description.references | Padmanabhan, T. (2010). Thermodynamical aspects of gravity: new insights. Reports on Progress in Physics, 73(4), 046901. doi:10.1088/0034-4885/73/4/046901 | es_ES |
dc.description.references | Padmanabhan, T. (2011). Lessons from classical gravity about the quantum structure of spacetime. Journal of Physics: Conference Series, 306, 012001. doi:10.1088/1742-6596/306/1/012001 | es_ES |
dc.description.references | Penrose, R. (2009). Black holes, quantum theory and cosmology. Journal of Physics: Conference Series, 174, 012001. doi:10.1088/1742-6596/174/1/012001 | es_ES |
dc.description.references | Rovelli, C. (1993). Statistical mechanics of gravity and the thermodynamical origin of time. Classical and Quantum Gravity, 10(8), 1549-1566. doi:10.1088/0264-9381/10/8/015 | es_ES |
dc.description.references | Rovelli, C. (1996). Relational quantum mechanics. International Journal of Theoretical Physics, 35(8), 1637-1678. doi:10.1007/bf02302261 | es_ES |
dc.description.references | Rovelli, C., & Smerlak, M. (2011). Thermal time and Tolman–Ehrenfest effect: ‘temperature as the speed of time’. Classical and Quantum Gravity, 28(7), 075007. doi:10.1088/0264-9381/28/7/075007 | es_ES |
dc.description.references | Smolin, L. (1986). On the nature of quantum fluctuations and their relation to gravitation and the principle of inertia. Classical and Quantum Gravity, 3(3), 347-359. doi:10.1088/0264-9381/3/3/009 | es_ES |
dc.description.references | Smolin, L. (1986). Quantum gravity and the statistical interpretation of quantum mechanics. International Journal of Theoretical Physics, 25(3), 215-238. doi:10.1007/bf00668705 | es_ES |
dc.description.references | Smolin, L. (2012). A Real Ensemble Interpretation of Quantum Mechanics. Foundations of Physics, 42(10), 1239-1261. doi:10.1007/s10701-012-9666-4 | es_ES |
dc.description.references | Verlinde, E. (2011). On the origin of gravity and the laws of Newton. Journal of High Energy Physics, 2011(4). doi:10.1007/jhep04(2011)029 | es_ES |
dc.description.references | Wald, R. M. (1980). Quantum gravity and time reversibility. Physical Review D, 21(10), 2742-2755. doi:10.1103/physrevd.21.2742 | es_ES |
dc.description.references | Wald, R. M. (1999). Gravitation, thermodynamics and quantum theory. Classical and Quantum Gravity, 16(12A), A177-A190. doi:10.1088/0264-9381/16/12a/309 | es_ES |
dc.description.references | Wetterich, C. (2009). Emergence of quantum mechanics from classical statistics. Journal of Physics: Conference Series, 174, 012008. doi:10.1088/1742-6596/174/1/012008 | es_ES |