- -

Emergent quantum mechanics as a thermal ensemble

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Emergent quantum mechanics as a thermal ensemble

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fernández de Córdoba Castellá, Pedro José es_ES
dc.contributor.author Isidro San Juan, José María es_ES
dc.contributor.author Perea, Milton Henry es_ES
dc.date.accessioned 2016-05-27T10:12:18Z
dc.date.available 2016-05-27T10:12:18Z
dc.date.issued 2014-09
dc.identifier.issn 0219-8878
dc.identifier.uri http://hdl.handle.net/10251/64843
dc.description.abstract It has been argued that gravity acts dissipatively on quantum-mechanical systems, inducing thermal fluctuations that become indistinguishable from quantum fluctuations. This has led some authors to demand that some form of time irreversibility be incorporated into the formalism of quantum mechanics. As a tool toward this goal, we propose a thermodynamical approach to quantum mechanics, based on Onsager s classical theory of irreversible processes and Prigogine s nonunitary transformation theory. An entropy operator replaces the Hamiltonian as the generator of evolution. The canonically conjugate variable corresponding to the entropy is a dimensionless evolution parameter. Contrary to the Hamiltonian, the entropy operator is not a conserved Noether charge. Our construction succeeds in implementing gravitationally-induced irreversibility in the quantum theory. es_ES
dc.language Inglés es_ES
dc.publisher World Scientific Publishing es_ES
dc.relation.ispartof International Journal of Geometric Methods in Modern Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Irreversibility es_ES
dc.subject Emergent quantum mechanics es_ES
dc.subject Gravity es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Emergent quantum mechanics as a thermal ensemble es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1142/S0219887814500686
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Fernández De Córdoba Castellá, PJ.; Isidro San Juan, JM.; Perea, MH. (2014). Emergent quantum mechanics as a thermal ensemble. International Journal of Geometric Methods in Modern Physics. 11(8):1450068-1450084. doi:10.1142/S0219887814500686 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1142/S0219887814500686 es_ES
dc.description.upvformatpinicio 1450068 es_ES
dc.description.upvformatpfin 1450084 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 8 es_ES
dc.relation.senia 268993 es_ES
dc.identifier.eissn 1793-6977
dc.description.references ACOSTA, D., FERNÁNDEZ DE CÓRDOBA, P., ISIDRO, J. M., & SANTANDER, J. L. G. (2012). AN ENTROPIC PICTURE OF EMERGENT QUANTUM MECHANICS. International Journal of Geometric Methods in Modern Physics, 09(05), 1250048. doi:10.1142/s021988781250048x es_ES
dc.description.references ACOSTA, D., FERNÁNDEZ DE CÓRDOBA, P., ISIDRO, J. M., & SANTANDER, J. L. G. (2013). EMERGENT QUANTUM MECHANICS AS A CLASSICAL, IRREVERSIBLE THERMODYNAMICS. International Journal of Geometric Methods in Modern Physics, 10(04), 1350007. doi:10.1142/s0219887813500072 es_ES
dc.description.references Adler, S. L. (2004). Quantum Theory as an Emergent Phenomenon. doi:10.1017/cbo9780511535277 es_ES
dc.description.references Bertoldi, G., Faraggi, A. E., & Matone, M. (2000). Equivalence principle, higher-dimensional Möbius group and the hidden antisymmetric tensor of quantum mechanics. Classical and Quantum Gravity, 17(19), 3965-4005. doi:10.1088/0264-9381/17/19/302 es_ES
dc.description.references Blasone, M., Jizba, P., & Scardigli, F. (2009). Can quantum mechanics be an emergent phenomenon? Journal of Physics: Conference Series, 174, 012034. doi:10.1088/1742-6596/174/1/012034 es_ES
dc.description.references Carroll, R. (2010). On The Emergence Theme Of Physics. doi:10.1142/9789814291804 es_ES
dc.description.references Caticha, A. (2011). Entropic dynamics, time and quantum theory. Journal of Physics A: Mathematical and Theoretical, 44(22), 225303. doi:10.1088/1751-8113/44/22/225303 es_ES
dc.description.references Christenson, J. H., Cronin, J. W., Fitch, V. L., & Turlay, R. (1964). Evidence for the2πDecay of theK20Meson. Physical Review Letters, 13(4), 138-140. doi:10.1103/physrevlett.13.138 es_ES
dc.description.references Connes, A., & Rovelli, C. (1994). Von Neumann algebra automorphisms and time-thermodynamics relation in generally covariant quantum theories. Classical and Quantum Gravity, 11(12), 2899-2917. doi:10.1088/0264-9381/11/12/007 es_ES
dc.description.references ELZE, H.-T. (2009). THE ATTRACTOR AND THE QUANTUM STATES. International Journal of Quantum Information, 07(supp01), 83-96. doi:10.1142/s0219749909004700 es_ES
dc.description.references Elze, H.-T. (2009). Symmetry aspects in emergent quantum mechanics. Journal of Physics: Conference Series, 171, 012034. doi:10.1088/1742-6596/171/1/012034 es_ES
dc.description.references Córdoba, P. F. de, Isidro, J. M., & Perea, M. H. (2013). Emergence from irreversibility. Journal of Physics: Conference Series, 442, 012033. doi:10.1088/1742-6596/442/1/012033 es_ES
dc.description.references Gambini, R., García-Pintos, L. P., & Pullin, J. (2011). An axiomatic formulation of the Montevideo interpretation of quantum mechanics. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 42(4), 256-263. doi:10.1016/j.shpsb.2011.10.002 es_ES
dc.description.references GRAY, N., MINIC, D., & PLEIMLING, M. (2013). ON NONEQUILIBRIUM PHYSICS AND STRING THEORY. International Journal of Modern Physics A, 28(07), 1330009. doi:10.1142/s0217751x13300093 es_ES
dc.description.references Hooft, G. ’t. (1999). Quantum gravity as a dissipative deterministic system. Classical and Quantum Gravity, 16(10), 3263-3279. doi:10.1088/0264-9381/16/10/316 es_ES
dc.description.references ’t Hooft, G., Rajantie, A., Contaldi, C., Dauncey, P., & Stoica, H. (2007). Emergent Quantum Mechanics and Emergent Symmetries. AIP Conference Proceedings. doi:10.1063/1.2823751 es_ES
dc.description.references HU, B. L. (2011). GRAVITY AND NONEQUILIBRIUM THERMODYNAMICS OF CLASSICAL MATTER. International Journal of Modern Physics D, 20(05), 697-716. doi:10.1142/s0218271811019049 es_ES
dc.description.references Lees, J. P., Poireau, V., Tisserand, V., Garra Tico, J., Grauges, E., Palano, A., … Kerth, L. T. (2012). Observation of Time-Reversal Violation in theB0Meson System. Physical Review Letters, 109(21). doi:10.1103/physrevlett.109.211801 es_ES
dc.description.references Onsager, L. (1931). Reciprocal Relations in Irreversible Processes. I. Physical Review, 37(4), 405-426. doi:10.1103/physrev.37.405 es_ES
dc.description.references Onsager, L., & Machlup, S. (1953). Fluctuations and Irreversible Processes. Physical Review, 91(6), 1505-1512. doi:10.1103/physrev.91.1505 es_ES
dc.description.references Padmanabhan, T. (2010). Thermodynamical aspects of gravity: new insights. Reports on Progress in Physics, 73(4), 046901. doi:10.1088/0034-4885/73/4/046901 es_ES
dc.description.references Padmanabhan, T. (2011). Lessons from classical gravity about the quantum structure of spacetime. Journal of Physics: Conference Series, 306, 012001. doi:10.1088/1742-6596/306/1/012001 es_ES
dc.description.references Penrose, R. (2009). Black holes, quantum theory and cosmology. Journal of Physics: Conference Series, 174, 012001. doi:10.1088/1742-6596/174/1/012001 es_ES
dc.description.references Rovelli, C. (1993). Statistical mechanics of gravity and the thermodynamical origin of time. Classical and Quantum Gravity, 10(8), 1549-1566. doi:10.1088/0264-9381/10/8/015 es_ES
dc.description.references Rovelli, C. (1996). Relational quantum mechanics. International Journal of Theoretical Physics, 35(8), 1637-1678. doi:10.1007/bf02302261 es_ES
dc.description.references Rovelli, C., & Smerlak, M. (2011). Thermal time and Tolman–Ehrenfest effect: ‘temperature as the speed of time’. Classical and Quantum Gravity, 28(7), 075007. doi:10.1088/0264-9381/28/7/075007 es_ES
dc.description.references Smolin, L. (1986). On the nature of quantum fluctuations and their relation to gravitation and the principle of inertia. Classical and Quantum Gravity, 3(3), 347-359. doi:10.1088/0264-9381/3/3/009 es_ES
dc.description.references Smolin, L. (1986). Quantum gravity and the statistical interpretation of quantum mechanics. International Journal of Theoretical Physics, 25(3), 215-238. doi:10.1007/bf00668705 es_ES
dc.description.references Smolin, L. (2012). A Real Ensemble Interpretation of Quantum Mechanics. Foundations of Physics, 42(10), 1239-1261. doi:10.1007/s10701-012-9666-4 es_ES
dc.description.references Verlinde, E. (2011). On the origin of gravity and the laws of Newton. Journal of High Energy Physics, 2011(4). doi:10.1007/jhep04(2011)029 es_ES
dc.description.references Wald, R. M. (1980). Quantum gravity and time reversibility. Physical Review D, 21(10), 2742-2755. doi:10.1103/physrevd.21.2742 es_ES
dc.description.references Wald, R. M. (1999). Gravitation, thermodynamics and quantum theory. Classical and Quantum Gravity, 16(12A), A177-A190. doi:10.1088/0264-9381/16/12a/309 es_ES
dc.description.references Wetterich, C. (2009). Emergence of quantum mechanics from classical statistics. Journal of Physics: Conference Series, 174, 012008. doi:10.1088/1742-6596/174/1/012008 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem