- -

MCR-ALS on metabolic networks: Obtaining more meaningful pathways

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

MCR-ALS on metabolic networks: Obtaining more meaningful pathways

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Folch-Fortuny, Abel es_ES
dc.contributor.author Tortajada Serra, Marta es_ES
dc.contributor.author Prats-Montalbán, José Manuel es_ES
dc.contributor.author Llaneras Estrada, Francisco es_ES
dc.contributor.author Picó Marco, Jesús Andrés es_ES
dc.contributor.author Ferrer Riquelme, Alberto José es_ES
dc.date.accessioned 2016-05-30T07:49:18Z
dc.date.available 2016-05-30T07:49:18Z
dc.date.issued 2015-03-15
dc.identifier.issn 0169-7439
dc.identifier.uri http://hdl.handle.net/10251/64899
dc.description.abstract [EN] With the aim of understanding the flux distributions across a metabolic network, i.e. within living cells, Principal Component Analysis (PCA) has been proposed to obtain a set of orthogonal components (pathways) capturing most of the variance in the flux data. The problems with this method are (i) that no additional information can be included in the model, and (ii) that orthogonality imposes a hard constraint, not always reasonably. To overcome these drawbacks, here we propose to use a more flexible approach such as Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) to obtain this set of biological pathways through the network. By using this method, different constraints can be included in the model, and the same source of variability can be present in different pathways, which is reasonable from a biological standpoint. This work follows a methodology developed for Pichia pastoris cultures grown on different carbon sources, lately presented in González-Martínez et al. (2014). In this paper a different grey modelling approach, which aims to incorporate a priori knowledge through constraints on the modelling algorithms, is applied to the same case of study. The results of both models are compared to show their strengths and weaknesses. es_ES
dc.description.sponsorship Research in this study was partially supported by the Spanish Ministry of Science and Innovation and FEDER funds from the European Union through grants DPI2011-28112-C04-01 and DPI2011-28112-C04-02. The authors are also grateful to Biopolis SL for supporting this research. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Chemometrics and Intelligent Laboratory Systems es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Pichia pastoris es_ES
dc.subject Metabolic network es_ES
dc.subject Grey modelling es_ES
dc.subject Multivariate Curve Resolution-Alternating es_ES
dc.subject Least Squares es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title MCR-ALS on metabolic networks: Obtaining more meaningful pathways es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.chemolab.2014.10.004
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2011-28112-C04-01/ES/MONITORIZACION, INFERENCIA, OPTIMIZACION Y CONTROL MULTI-ESCALA: DE CELULAS A BIORREACTORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2011-28112-C04-02/ES/MONITORIZACION, INFERENCIA, OPTIMIZACION Y CONTROL MULTI-ESCALA: DE CELULAS A BIORREACTORES. (MULTISCALES)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.description.bibliographicCitation Folch-Fortuny, A.; Tortajada Serra, M.; Prats-Montalbán, JM.; Llaneras Estrada, F.; Picó Marco, JA.; Ferrer Riquelme, AJ. (2015). MCR-ALS on metabolic networks: Obtaining more meaningful pathways. Chemometrics and Intelligent Laboratory Systems. 142:293-303. https://doi.org/10.1016/j.chemolab.2014.10.004 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.1016/j.chemolab.2014.10.004 es_ES
dc.description.upvformatpinicio 293 es_ES
dc.description.upvformatpfin 303 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 142 es_ES
dc.relation.senia 279820 es_ES
dc.identifier.eissn 1873-3239
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem