Mostrar el registro sencillo del ítem
dc.contributor.author | Folch-Fortuny, Abel | es_ES |
dc.contributor.author | Tortajada Serra, Marta | es_ES |
dc.contributor.author | Prats-Montalbán, José Manuel | es_ES |
dc.contributor.author | Llaneras Estrada, Francisco | es_ES |
dc.contributor.author | Picó Marco, Jesús Andrés | es_ES |
dc.contributor.author | Ferrer Riquelme, Alberto José | es_ES |
dc.date.accessioned | 2016-05-30T07:49:18Z | |
dc.date.available | 2016-05-30T07:49:18Z | |
dc.date.issued | 2015-03-15 | |
dc.identifier.issn | 0169-7439 | |
dc.identifier.uri | http://hdl.handle.net/10251/64899 | |
dc.description.abstract | [EN] With the aim of understanding the flux distributions across a metabolic network, i.e. within living cells, Principal Component Analysis (PCA) has been proposed to obtain a set of orthogonal components (pathways) capturing most of the variance in the flux data. The problems with this method are (i) that no additional information can be included in the model, and (ii) that orthogonality imposes a hard constraint, not always reasonably. To overcome these drawbacks, here we propose to use a more flexible approach such as Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) to obtain this set of biological pathways through the network. By using this method, different constraints can be included in the model, and the same source of variability can be present in different pathways, which is reasonable from a biological standpoint. This work follows a methodology developed for Pichia pastoris cultures grown on different carbon sources, lately presented in González-Martínez et al. (2014). In this paper a different grey modelling approach, which aims to incorporate a priori knowledge through constraints on the modelling algorithms, is applied to the same case of study. The results of both models are compared to show their strengths and weaknesses. | es_ES |
dc.description.sponsorship | Research in this study was partially supported by the Spanish Ministry of Science and Innovation and FEDER funds from the European Union through grants DPI2011-28112-C04-01 and DPI2011-28112-C04-02. The authors are also grateful to Biopolis SL for supporting this research. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Chemometrics and Intelligent Laboratory Systems | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Pichia pastoris | es_ES |
dc.subject | Metabolic network | es_ES |
dc.subject | Grey modelling | es_ES |
dc.subject | Multivariate Curve Resolution-Alternating | es_ES |
dc.subject | Least Squares | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.subject.classification | INGENIERIA DE SISTEMAS Y AUTOMATICA | es_ES |
dc.title | MCR-ALS on metabolic networks: Obtaining more meaningful pathways | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.chemolab.2014.10.004 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2011-28112-C04-01/ES/MONITORIZACION, INFERENCIA, OPTIMIZACION Y CONTROL MULTI-ESCALA: DE CELULAS A BIORREACTORES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2011-28112-C04-02/ES/MONITORIZACION, INFERENCIA, OPTIMIZACION Y CONTROL MULTI-ESCALA: DE CELULAS A BIORREACTORES. (MULTISCALES)/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica | es_ES |
dc.description.bibliographicCitation | Folch-Fortuny, A.; Tortajada Serra, M.; Prats-Montalbán, JM.; Llaneras Estrada, F.; Picó Marco, JA.; Ferrer Riquelme, AJ. (2015). MCR-ALS on metabolic networks: Obtaining more meaningful pathways. Chemometrics and Intelligent Laboratory Systems. 142:293-303. https://doi.org/10.1016/j.chemolab.2014.10.004 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://dx.doi.org/10.1016/j.chemolab.2014.10.004 | es_ES |
dc.description.upvformatpinicio | 293 | es_ES |
dc.description.upvformatpfin | 303 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 142 | es_ES |
dc.relation.senia | 279820 | es_ES |
dc.identifier.eissn | 1873-3239 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |