Mostrar el registro sencillo del ítem
dc.contributor.author | Folch-Fortuny, Abel | es_ES |
dc.contributor.author | ARTEAGA MORENO, FRANCISCO JAVIER | es_ES |
dc.contributor.author | Ferrer Riquelme, Alberto José | es_ES |
dc.date.accessioned | 2016-05-30T07:54:13Z | |
dc.date.available | 2016-05-30T07:54:13Z | |
dc.date.issued | 2015-08-15 | |
dc.identifier.issn | 0169-7439 | |
dc.identifier.uri | http://hdl.handle.net/10251/64900 | |
dc.description.abstract | [EN] This paper introduces new methods for building principal component analysis (PCA) models with missing data: projection to the model plane (PMP), known data regression (KDR), KDR with principal component regression (PCR), KDR with partial least squares regression (PLS) and trimmed scores regression (TSR). These methods are adapted from their PCA model exploitation version to deal with the more general problem of PCA model building when the training set has missing values. A comparative study is carried out comparing these new methods with the standard ones, such as the modified nonlinear iterative partial least squares (NIPALS), the it- erative algorithm (IA), the data augmentation method (DA) and the nonlinear programming approach (NLP). The performance is assessed using the mean squared prediction error of the reconstructed matrix and the cosines between the actual principal components and the ones extracted by each method. Four data sets, two simulated and two real ones, with several percentages of missing data, are used to perform the comparison. Guardar / Salir Siguiente > | es_ES |
dc.description.sponsorship | Research in this study was partially supported by the Spanish Ministry of Science and Innovation and FEDER funds from the European Union through grant DPI2011-28112-C04-02, and the Spanish Ministry of Economy and Competitiveness through grant ECO2013-43353-R. The authors gratefully acknowledge Salvador Garcia-Munoz for providing the Phi toolbox (version 1.7) to perform the nonlinear programming approach (NLP) method. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Chemometrics and Intelligent Laboratory Systems | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Missing data | es_ES |
dc.subject | PCA model building | es_ES |
dc.subject | PCA model exploitation | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | PCA model building with missing data: New proposals and a comparative study | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.chemolab.2015.05.006 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//DPI2011-28112-C04-02/ES/MONITORIZACION, INFERENCIA, OPTIMIZACION Y CONTROL MULTI-ESCALA: DE CELULAS A BIORREACTORES. (MULTISCALES)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//ECO2013-43353-R/ES/CREAR CAPITAL DE MARCA E INNOVAR A TRAVES DE LA RELACION: OPORTUNIDADES PARA LA EMPRESA TURISTICA MEDIANTE LOS AVANCES EN LAS TIC/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.description.bibliographicCitation | Folch-Fortuny, A.; Arteaga Moreno, FJ.; Ferrer Riquelme, AJ. (2015). PCA model building with missing data: New proposals and a comparative study. Chemometrics and Intelligent Laboratory Systems. 146:77-88. https://doi.org/10.1016/j.chemolab.2015.05.006 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://dx.doi.org/10.1016/j.chemolab.2015.05.006 | es_ES |
dc.description.upvformatpinicio | 77 | es_ES |
dc.description.upvformatpfin | 88 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 146 | es_ES |
dc.relation.senia | 290485 | es_ES |
dc.identifier.eissn | 1873-3239 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |