- -

PCA model building with missing data: New proposals and a comparative study

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

PCA model building with missing data: New proposals and a comparative study

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Folch-Fortuny, Abel es_ES
dc.contributor.author ARTEAGA MORENO, FRANCISCO JAVIER es_ES
dc.contributor.author Ferrer Riquelme, Alberto José es_ES
dc.date.accessioned 2016-05-30T07:54:13Z
dc.date.available 2016-05-30T07:54:13Z
dc.date.issued 2015-08-15
dc.identifier.issn 0169-7439
dc.identifier.uri http://hdl.handle.net/10251/64900
dc.description.abstract [EN] This paper introduces new methods for building principal component analysis (PCA) models with missing data: projection to the model plane (PMP), known data regression (KDR), KDR with principal component regression (PCR), KDR with partial least squares regression (PLS) and trimmed scores regression (TSR). These methods are adapted from their PCA model exploitation version to deal with the more general problem of PCA model building when the training set has missing values. A comparative study is carried out comparing these new methods with the standard ones, such as the modified nonlinear iterative partial least squares (NIPALS), the it- erative algorithm (IA), the data augmentation method (DA) and the nonlinear programming approach (NLP). The performance is assessed using the mean squared prediction error of the reconstructed matrix and the cosines between the actual principal components and the ones extracted by each method. Four data sets, two simulated and two real ones, with several percentages of missing data, are used to perform the comparison. Guardar / Salir Siguiente > es_ES
dc.description.sponsorship Research in this study was partially supported by the Spanish Ministry of Science and Innovation and FEDER funds from the European Union through grant DPI2011-28112-C04-02, and the Spanish Ministry of Economy and Competitiveness through grant ECO2013-43353-R. The authors gratefully acknowledge Salvador Garcia-Munoz for providing the Phi toolbox (version 1.7) to perform the nonlinear programming approach (NLP) method. en_EN
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Chemometrics and Intelligent Laboratory Systems es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Missing data es_ES
dc.subject PCA model building es_ES
dc.subject PCA model exploitation es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title PCA model building with missing data: New proposals and a comparative study es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.chemolab.2015.05.006
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2011-28112-C04-02/ES/MONITORIZACION, INFERENCIA, OPTIMIZACION Y CONTROL MULTI-ESCALA: DE CELULAS A BIORREACTORES. (MULTISCALES)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ECO2013-43353-R/ES/CREAR CAPITAL DE MARCA E INNOVAR A TRAVES DE LA RELACION: OPORTUNIDADES PARA LA EMPRESA TURISTICA MEDIANTE LOS AVANCES EN LAS TIC/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Folch-Fortuny, A.; Arteaga Moreno, FJ.; Ferrer Riquelme, AJ. (2015). PCA model building with missing data: New proposals and a comparative study. Chemometrics and Intelligent Laboratory Systems. 146:77-88. https://doi.org/10.1016/j.chemolab.2015.05.006 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.1016/j.chemolab.2015.05.006 es_ES
dc.description.upvformatpinicio 77 es_ES
dc.description.upvformatpfin 88 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 146 es_ES
dc.relation.senia 290485 es_ES
dc.identifier.eissn 1873-3239
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem