- -

Automatic Individual Arterial Input Functions Calculated From PCA Outperform Manual and Population-Averaged Approaches for the Pharmacokinetic Modeling of DCE-MR Images

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Automatic Individual Arterial Input Functions Calculated From PCA Outperform Manual and Population-Averaged Approaches for the Pharmacokinetic Modeling of DCE-MR Images

Show full item record

Sanz Requena, R.; Prats-Montalbán, JM.; Marti Bonmati, L.; Alberich Bayarri, A.; García Martí, G.; Pérez, R.; Ferrer Riquelme, AJ. (2015). Automatic Individual Arterial Input Functions Calculated From PCA Outperform Manual and Population-Averaged Approaches for the Pharmacokinetic Modeling of DCE-MR Images. Journal of Magnetic Resonance Imaging. 42:477-487. doi:10.1002/jmri.24805

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/64904

Files in this item

Item Metadata

Title: Automatic Individual Arterial Input Functions Calculated From PCA Outperform Manual and Population-Averaged Approaches for the Pharmacokinetic Modeling of DCE-MR Images
Author: Sanz Requena, Roberto Prats-Montalbán, José Manuel Marti Bonmati, Luis Alberich Bayarri, Ángel García Martí, Gracián Pérez, Rosario Ferrer Riquelme, Alberto José
UPV Unit: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Issued date:
Abstract:
[EN] Background: To introduce a segmentation method to calculate an automatic arterial input function (AIF) based on prin- cipal component analysis (PCA) of dynamic contrast enhanced MR (DCE-MR) imaging and compare it with ...[+]
Subjects: Perfusion , MRI , Modeling , Pharmacokinetics , Variability , Automatic
Copyrigths: Reserva de todos los derechos
Source:
Journal of Magnetic Resonance Imaging. (issn: 1053-1807 ) (eissn: 1522-2586 )
DOI: 10.1002/jmri.24805
Publisher:
Wiley
Publisher version: https://dx.doi.org/10.1002/jmri.24805
Type: Artículo

References

Leach, M. O., Brindle, K. M., Evelhoch, J. L., Griffiths, J. R., Horsman, M. R., Jackson, A., … Workman, P. (2005). The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. British Journal of Cancer, 92(9), 1599-1610. doi:10.1038/sj.bjc.6602550

Tofts, P. S., & Kermode, A. G. (1991). Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magnetic Resonance in Medicine, 17(2), 357-367. doi:10.1002/mrm.1910170208

Parker, G. J. M., Roberts, C., Macdonald, A., Buonaccorsi, G. A., Cheung, S., Buckley, D. L., … Jayson, G. C. (2006). Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magnetic Resonance in Medicine, 56(5), 993-1000. doi:10.1002/mrm.21066 [+]
Leach, M. O., Brindle, K. M., Evelhoch, J. L., Griffiths, J. R., Horsman, M. R., Jackson, A., … Workman, P. (2005). The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. British Journal of Cancer, 92(9), 1599-1610. doi:10.1038/sj.bjc.6602550

Tofts, P. S., & Kermode, A. G. (1991). Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magnetic Resonance in Medicine, 17(2), 357-367. doi:10.1002/mrm.1910170208

Parker, G. J. M., Roberts, C., Macdonald, A., Buonaccorsi, G. A., Cheung, S., Buckley, D. L., … Jayson, G. C. (2006). Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magnetic Resonance in Medicine, 56(5), 993-1000. doi:10.1002/mrm.21066

Meng, R., Chang, S. D., Jones, E. C., Goldenberg, S. L., & Kozlowski, P. (2010). Comparison between Population Average and Experimentally Measured Arterial Input Function in Predicting Biopsy Results in Prostate Cancer. Academic Radiology, 17(4), 520-525. doi:10.1016/j.acra.2009.11.006

Loveless, M. E., Halliday, J., Liess, C., Xu, L., Dortch, R. D., Whisenant, J., … Yankeelov, T. E. (2011). A quantitative comparison of the influence of individual versus population-derived vascular input functions on dynamic contrast enhanced-MRI in small animals. Magnetic Resonance in Medicine, 67(1), 226-236. doi:10.1002/mrm.22988

Shukla-Dave, A., Lee, N., Stambuk, H., Wang, Y., Huang, W., Thaler, H. T., … Koutcher, J. A. (2009). Average arterial input function for quantitative dynamic contrast enhanced magnetic resonance imaging of neck nodal metastases. BMC Medical Physics, 9(1). doi:10.1186/1756-6649-9-4

Wang, Y., Huang, W., Panicek, D. M., Schwartz, L. H., & Koutcher, J. A. (2008). Feasibility of using limited-population-based arterial input function for pharmacokinetic modeling of osteosarcoma dynamic contrast-enhanced MRI data. Magnetic Resonance in Medicine, 59(5), 1183-1189. doi:10.1002/mrm.21432

Rijpkema, M., Kaanders, J. H. A. M., Joosten, F. B. M., van der Kogel, A. J., & Heerschap, A. (2001). Method for quantitative mapping of dynamic MRI contrast agent uptake in human tumors. Journal of Magnetic Resonance Imaging, 14(4), 457-463. doi:10.1002/jmri.1207

Singh, A., Rathore, R. K. S., Haris, M., Verma, S. K., Husain, N., & Gupta, R. K. (2009). Improved bolus arrival time and arterial input function estimation for tracer kinetic analysis in DCE-MRI. Journal of Magnetic Resonance Imaging, 29(1), 166-176. doi:10.1002/jmri.21624

Shi, L., Wang, D., Liu, W., Fang, K., Wang, Y.-X. J., Huang, W., … Ahuja, A. T. (2013). Automatic detection of arterial input function in dynamic contrast enhanced MRI based on affinity propagation clustering. Journal of Magnetic Resonance Imaging, 39(5), 1327-1337. doi:10.1002/jmri.24259

Kim, J.-H., Im, G. H., Yang, J., Choi, D., Lee, W. J., & Lee, J. H. (2011). Quantitative dynamic contrast-enhanced MRI for mouse models using automatic detection of the arterial input function. NMR in Biomedicine, 25(4), 674-684. doi:10.1002/nbm.1784

Li, X., Welch, E. B., Arlinghaus, L. R., Chakravarthy, A. B., Xu, L., Farley, J., … Yankeelov, T. E. (2011). A novel AIF tracking method and comparison of DCE-MRI parameters using individual and population-based AIFs in human breast cancer. Physics in Medicine and Biology, 56(17), 5753-5769. doi:10.1088/0031-9155/56/17/018

Fedorov, A., Fluckiger, J., Ayers, G. D., Li, X., Gupta, S. N., Tempany, C., … Fennessy, F. M. (2014). A comparison of two methods for estimating DCE-MRI parameters via individual and cohort based AIFs in prostate cancer: A step towards practical implementation. Magnetic Resonance Imaging, 32(4), 321-329. doi:10.1016/j.mri.2014.01.004

Lin, Y.-C., Chan, T.-H., Chi, C.-Y., Ng, S.-H., Liu, H.-L., Wei, K.-C., … Wang, J.-J. (2012). Blind estimation of the arterial input function in dynamic contrast-enhanced MRI using purity maximization. Magnetic Resonance in Medicine, 68(5), 1439-1449. doi:10.1002/mrm.24144

Roberts, C., Little, R., Watson, Y., Zhao, S., Buckley, D. L., & Parker, G. J. M. (2010). The effect of blood inflow andB1-field inhomogeneity on measurement of the arterial input function in axial 3D spoiled gradient echo dynamic contrast-enhanced MRI. Magnetic Resonance in Medicine, 65(1), 108-119. doi:10.1002/mrm.22593

Jackson, J. E. (1991). A Use’s Guide to Principal Components. Wiley Series in Probability and Statistics. doi:10.1002/0471725331

Prats-Montalbán, J. M., Sanz-Requena, R., Martí-Bonmatí, L., & Ferrer, A. (2013). Prostate functional magnetic resonance image analysis using multivariate curve resolution methods. Journal of Chemometrics, 28(8), 672-680. doi:10.1002/cem.2585

Eyal, E., Bloch, B. N., Rofsky, N. M., Furman-Haran, E., Genega, E. M., Lenkinski, R. E., & Degani, H. (2010). Principal Component Analysis of Dynamic Contrast Enhanced MRI in Human Prostate Cancer. Investigative Radiology, 45(4), 174-181. doi:10.1097/rli.0b013e3181d0a02f

Tofts, P. S. (1997). Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. Journal of Magnetic Resonance Imaging, 7(1), 91-101. doi:10.1002/jmri.1880070113

Donahue, K. M., Burstein, D., Manning, W. J., & Gray, M. L. (1994). Studies of Gd-DTPA relaxivity and proton exchange rates in tissue. Magnetic Resonance in Medicine, 32(1), 66-76. doi:10.1002/mrm.1910320110

Taylor, J. S., & Reddick, W. E. (2000). Evolution from empirical dynamic contrast-enhanced magnetic resonance imaging to pharmacokinetic MRI. Advanced Drug Delivery Reviews, 41(1), 91-110. doi:10.1016/s0169-409x(99)00058-7

Port, R. E., Knopp, M. V., & Brix, G. (2001). Dynamic contrast-enhanced MRI using Gd-DTPA: Interindividual variability of the arterial input function and consequences for the assessment of kinetics in tumors. Magnetic Resonance in Medicine, 45(6), 1030-1038. doi:10.1002/mrm.1137

Dale, B. M., Jesberger, J. A., Lewin, J. S., Hillenbrand, C. M., & Duerk, J. L. (2003). Determining and optimizing the precision of quantitative measurements of perfusion from dynamic contrast enhanced MRI. Journal of Magnetic Resonance Imaging, 18(5), 575-584. doi:10.1002/jmri.10399

Garpebring, A., Brynolfsson, P., Yu, J., Wirestam, R., Johansson, A., Asklund, T., & Karlsson, M. (2012). Uncertainty estimation in dynamic contrast-enhanced MRI. Magnetic Resonance in Medicine, 69(4), 992-1002. doi:10.1002/mrm.24328

Onxley, J. D., Yoo, D. S., Muradyan, N., MacFall, J. R., Brizel, D. M., & Craciunescu, O. I. (2014). Comprehensive Population-Averaged Arterial Input Function for Dynamic Contrast–Enhanced vMagnetic Resonance Imaging of Head and Neck Cancer. International Journal of Radiation Oncology*Biology*Physics, 89(3), 658-665. doi:10.1016/j.ijrobp.2014.03.006

Chen, Y.-J., Chu, W.-C., Pu, Y.-S., Chueh, S.-C., Shun, C.-T., & Tseng, W.-Y. I. (2012). Washout gradient in dynamic contrast-enhanced MRI is associated with tumor aggressiveness of prostate cancer. Journal of Magnetic Resonance Imaging, 36(4), 912-919. doi:10.1002/jmri.23723

Vos, E. K., Litjens, G. J. S., Kobus, T., Hambrock, T., Kaa, C. A. H. de, Barentsz, J. O., … Scheenen, T. W. J. (2013). Assessment of Prostate Cancer Aggressiveness Using Dynamic Contrast-enhanced Magnetic Resonance Imaging at 3 T. European Urology, 64(3), 448-455. doi:10.1016/j.eururo.2013.05.045

Yang, C., Karczmar, G. S., Medved, M., Oto, A., Zamora, M., & Stadler, W. M. (2009). Reproducibility assessment of a multiple reference tissue method for quantitative dynamic contrast enhanced-MRI analysis. Magnetic Resonance in Medicine, 61(4), 851-859. doi:10.1002/mrm.21912

McGrath, D. M., Bradley, D. P., Tessier, J. L., Lacey, T., Taylor, C. J., & Parker, G. J. M. (2009). Comparison of model-based arterial input functions for dynamic contrast-enhanced MRI in tumor bearing rats. Magnetic Resonance in Medicine, 61(5), 1173-1184. doi:10.1002/mrm.21959

Orton, M. R., d’ Arcy, J. A., Walker-Samuel, S., Hawkes, D. J., Atkinson, D., Collins, D. J., & Leach, M. O. (2008). Computationally efficient vascular input function models for quantitative kinetic modelling using DCE-MRI. Physics in Medicine and Biology, 53(5), 1225-1239. doi:10.1088/0031-9155/53/5/005

Heisen, M., Fan, X., Buurman, J., van Riel, N. A. W., Karczmar, G. S., & ter Haar Romeny, B. M. (2010). The use of a reference tissue arterial input function with low-temporal-resolution DCE-MRI data. Physics in Medicine and Biology, 55(16), 4871-4883. doi:10.1088/0031-9155/55/16/016

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record