- -

Automatic Individual Arterial Input Functions Calculated From PCA Outperform Manual and Population-Averaged Approaches for the Pharmacokinetic Modeling of DCE-MR Images

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automatic Individual Arterial Input Functions Calculated From PCA Outperform Manual and Population-Averaged Approaches for the Pharmacokinetic Modeling of DCE-MR Images

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sanz Requena, Roberto es_ES
dc.contributor.author Prats-Montalbán, José Manuel es_ES
dc.contributor.author Marti Bonmati, Luis es_ES
dc.contributor.author Alberich Bayarri, Ángel es_ES
dc.contributor.author García Martí, Gracián es_ES
dc.contributor.author Pérez, Rosario es_ES
dc.contributor.author Ferrer Riquelme, Alberto José es_ES
dc.date.accessioned 2016-05-30T08:33:02Z
dc.date.available 2016-05-30T08:33:02Z
dc.date.issued 2015-08
dc.identifier.issn 1053-1807
dc.identifier.uri http://hdl.handle.net/10251/64904
dc.description.abstract [EN] Background: To introduce a segmentation method to calculate an automatic arterial input function (AIF) based on prin- cipal component analysis (PCA) of dynamic contrast enhanced MR (DCE-MR) imaging and compare it with individual manually selected and population-averaged AIFs using calculated pharmacokinetic parameters. Methods: The study included 65 individuals with prostate examinations (27 tumors and 38 controls). Manual AIFs were individually extracted and also averaged to obtain a population AIF. Automatic AIFs were individually obtained by applying PCA to volumetric DCE-MR imaging data and finding the highest correlation of the PCs with a reference AIF. Variability was assessed using coefficients of variation and repeated measures tests. The different AIFs were used as inputs to the pharmacokinetic model and correlation coefficients, Bland-Altman plots and analysis of variance tests were obtained to compare the results. Results: Automatic PCA-based AIFs were successfully extracted in all cases. The manual and PCA-based AIFs showed good correlation (r between pharmacokinetic parameters ranging from 0.74 to 0.95), with differences below the manual individual variability (RMSCV up to 27.3%). The population-averaged AIF showed larger differences (r from 0.30 to 0.61). Conclusion: The automatic PCA-based approach minimizes the variability associated to obtaining individual volume- based AIFs in DCE-MR studies of the prostate. es_ES
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof Journal of Magnetic Resonance Imaging es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Perfusion es_ES
dc.subject MRI es_ES
dc.subject Modeling es_ES
dc.subject Pharmacokinetics es_ES
dc.subject Variability es_ES
dc.subject Automatic es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Automatic Individual Arterial Input Functions Calculated From PCA Outperform Manual and Population-Averaged Approaches for the Pharmacokinetic Modeling of DCE-MR Images es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/jmri.24805
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Sanz Requena, R.; Prats-Montalbán, JM.; Marti Bonmati, L.; Alberich Bayarri, A.; García Martí, G.; Pérez, R.; Ferrer Riquelme, AJ. (2015). Automatic Individual Arterial Input Functions Calculated From PCA Outperform Manual and Population-Averaged Approaches for the Pharmacokinetic Modeling of DCE-MR Images. Journal of Magnetic Resonance Imaging. 42:477-487. doi:10.1002/jmri.24805 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.1002/jmri.24805 es_ES
dc.description.upvformatpinicio 477 es_ES
dc.description.upvformatpfin 487 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 42 es_ES
dc.relation.senia 282525 es_ES
dc.identifier.eissn 1522-2586
dc.description.references Leach, M. O., Brindle, K. M., Evelhoch, J. L., Griffiths, J. R., Horsman, M. R., Jackson, A., … Workman, P. (2005). The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. British Journal of Cancer, 92(9), 1599-1610. doi:10.1038/sj.bjc.6602550 es_ES
dc.description.references Tofts, P. S., & Kermode, A. G. (1991). Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magnetic Resonance in Medicine, 17(2), 357-367. doi:10.1002/mrm.1910170208 es_ES
dc.description.references Parker, G. J. M., Roberts, C., Macdonald, A., Buonaccorsi, G. A., Cheung, S., Buckley, D. L., … Jayson, G. C. (2006). Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magnetic Resonance in Medicine, 56(5), 993-1000. doi:10.1002/mrm.21066 es_ES
dc.description.references Meng, R., Chang, S. D., Jones, E. C., Goldenberg, S. L., & Kozlowski, P. (2010). Comparison between Population Average and Experimentally Measured Arterial Input Function in Predicting Biopsy Results in Prostate Cancer. Academic Radiology, 17(4), 520-525. doi:10.1016/j.acra.2009.11.006 es_ES
dc.description.references Loveless, M. E., Halliday, J., Liess, C., Xu, L., Dortch, R. D., Whisenant, J., … Yankeelov, T. E. (2011). A quantitative comparison of the influence of individual versus population-derived vascular input functions on dynamic contrast enhanced-MRI in small animals. Magnetic Resonance in Medicine, 67(1), 226-236. doi:10.1002/mrm.22988 es_ES
dc.description.references Shukla-Dave, A., Lee, N., Stambuk, H., Wang, Y., Huang, W., Thaler, H. T., … Koutcher, J. A. (2009). Average arterial input function for quantitative dynamic contrast enhanced magnetic resonance imaging of neck nodal metastases. BMC Medical Physics, 9(1). doi:10.1186/1756-6649-9-4 es_ES
dc.description.references Wang, Y., Huang, W., Panicek, D. M., Schwartz, L. H., & Koutcher, J. A. (2008). Feasibility of using limited-population-based arterial input function for pharmacokinetic modeling of osteosarcoma dynamic contrast-enhanced MRI data. Magnetic Resonance in Medicine, 59(5), 1183-1189. doi:10.1002/mrm.21432 es_ES
dc.description.references Rijpkema, M., Kaanders, J. H. A. M., Joosten, F. B. M., van der Kogel, A. J., & Heerschap, A. (2001). Method for quantitative mapping of dynamic MRI contrast agent uptake in human tumors. Journal of Magnetic Resonance Imaging, 14(4), 457-463. doi:10.1002/jmri.1207 es_ES
dc.description.references Singh, A., Rathore, R. K. S., Haris, M., Verma, S. K., Husain, N., & Gupta, R. K. (2009). Improved bolus arrival time and arterial input function estimation for tracer kinetic analysis in DCE-MRI. Journal of Magnetic Resonance Imaging, 29(1), 166-176. doi:10.1002/jmri.21624 es_ES
dc.description.references Shi, L., Wang, D., Liu, W., Fang, K., Wang, Y.-X. J., Huang, W., … Ahuja, A. T. (2013). Automatic detection of arterial input function in dynamic contrast enhanced MRI based on affinity propagation clustering. Journal of Magnetic Resonance Imaging, 39(5), 1327-1337. doi:10.1002/jmri.24259 es_ES
dc.description.references Kim, J.-H., Im, G. H., Yang, J., Choi, D., Lee, W. J., & Lee, J. H. (2011). Quantitative dynamic contrast-enhanced MRI for mouse models using automatic detection of the arterial input function. NMR in Biomedicine, 25(4), 674-684. doi:10.1002/nbm.1784 es_ES
dc.description.references Li, X., Welch, E. B., Arlinghaus, L. R., Chakravarthy, A. B., Xu, L., Farley, J., … Yankeelov, T. E. (2011). A novel AIF tracking method and comparison of DCE-MRI parameters using individual and population-based AIFs in human breast cancer. Physics in Medicine and Biology, 56(17), 5753-5769. doi:10.1088/0031-9155/56/17/018 es_ES
dc.description.references Fedorov, A., Fluckiger, J., Ayers, G. D., Li, X., Gupta, S. N., Tempany, C., … Fennessy, F. M. (2014). A comparison of two methods for estimating DCE-MRI parameters via individual and cohort based AIFs in prostate cancer: A step towards practical implementation. Magnetic Resonance Imaging, 32(4), 321-329. doi:10.1016/j.mri.2014.01.004 es_ES
dc.description.references Lin, Y.-C., Chan, T.-H., Chi, C.-Y., Ng, S.-H., Liu, H.-L., Wei, K.-C., … Wang, J.-J. (2012). Blind estimation of the arterial input function in dynamic contrast-enhanced MRI using purity maximization. Magnetic Resonance in Medicine, 68(5), 1439-1449. doi:10.1002/mrm.24144 es_ES
dc.description.references Roberts, C., Little, R., Watson, Y., Zhao, S., Buckley, D. L., & Parker, G. J. M. (2010). The effect of blood inflow andB1-field inhomogeneity on measurement of the arterial input function in axial 3D spoiled gradient echo dynamic contrast-enhanced MRI. Magnetic Resonance in Medicine, 65(1), 108-119. doi:10.1002/mrm.22593 es_ES
dc.description.references Jackson, J. E. (1991). A Use’s Guide to Principal Components. Wiley Series in Probability and Statistics. doi:10.1002/0471725331 es_ES
dc.description.references Prats-Montalbán, J. M., Sanz-Requena, R., Martí-Bonmatí, L., & Ferrer, A. (2013). Prostate functional magnetic resonance image analysis using multivariate curve resolution methods. Journal of Chemometrics, 28(8), 672-680. doi:10.1002/cem.2585 es_ES
dc.description.references Eyal, E., Bloch, B. N., Rofsky, N. M., Furman-Haran, E., Genega, E. M., Lenkinski, R. E., & Degani, H. (2010). Principal Component Analysis of Dynamic Contrast Enhanced MRI in Human Prostate Cancer. Investigative Radiology, 45(4), 174-181. doi:10.1097/rli.0b013e3181d0a02f es_ES
dc.description.references Tofts, P. S. (1997). Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. Journal of Magnetic Resonance Imaging, 7(1), 91-101. doi:10.1002/jmri.1880070113 es_ES
dc.description.references Donahue, K. M., Burstein, D., Manning, W. J., & Gray, M. L. (1994). Studies of Gd-DTPA relaxivity and proton exchange rates in tissue. Magnetic Resonance in Medicine, 32(1), 66-76. doi:10.1002/mrm.1910320110 es_ES
dc.description.references Taylor, J. S., & Reddick, W. E. (2000). Evolution from empirical dynamic contrast-enhanced magnetic resonance imaging to pharmacokinetic MRI. Advanced Drug Delivery Reviews, 41(1), 91-110. doi:10.1016/s0169-409x(99)00058-7 es_ES
dc.description.references Port, R. E., Knopp, M. V., & Brix, G. (2001). Dynamic contrast-enhanced MRI using Gd-DTPA: Interindividual variability of the arterial input function and consequences for the assessment of kinetics in tumors. Magnetic Resonance in Medicine, 45(6), 1030-1038. doi:10.1002/mrm.1137 es_ES
dc.description.references Dale, B. M., Jesberger, J. A., Lewin, J. S., Hillenbrand, C. M., & Duerk, J. L. (2003). Determining and optimizing the precision of quantitative measurements of perfusion from dynamic contrast enhanced MRI. Journal of Magnetic Resonance Imaging, 18(5), 575-584. doi:10.1002/jmri.10399 es_ES
dc.description.references Garpebring, A., Brynolfsson, P., Yu, J., Wirestam, R., Johansson, A., Asklund, T., & Karlsson, M. (2012). Uncertainty estimation in dynamic contrast-enhanced MRI. Magnetic Resonance in Medicine, 69(4), 992-1002. doi:10.1002/mrm.24328 es_ES
dc.description.references Onxley, J. D., Yoo, D. S., Muradyan, N., MacFall, J. R., Brizel, D. M., & Craciunescu, O. I. (2014). Comprehensive Population-Averaged Arterial Input Function for Dynamic Contrast–Enhanced vMagnetic Resonance Imaging of Head and Neck Cancer. International Journal of Radiation Oncology*Biology*Physics, 89(3), 658-665. doi:10.1016/j.ijrobp.2014.03.006 es_ES
dc.description.references Chen, Y.-J., Chu, W.-C., Pu, Y.-S., Chueh, S.-C., Shun, C.-T., & Tseng, W.-Y. I. (2012). Washout gradient in dynamic contrast-enhanced MRI is associated with tumor aggressiveness of prostate cancer. Journal of Magnetic Resonance Imaging, 36(4), 912-919. doi:10.1002/jmri.23723 es_ES
dc.description.references Vos, E. K., Litjens, G. J. S., Kobus, T., Hambrock, T., Kaa, C. A. H. de, Barentsz, J. O., … Scheenen, T. W. J. (2013). Assessment of Prostate Cancer Aggressiveness Using Dynamic Contrast-enhanced Magnetic Resonance Imaging at 3 T. European Urology, 64(3), 448-455. doi:10.1016/j.eururo.2013.05.045 es_ES
dc.description.references Yang, C., Karczmar, G. S., Medved, M., Oto, A., Zamora, M., & Stadler, W. M. (2009). Reproducibility assessment of a multiple reference tissue method for quantitative dynamic contrast enhanced-MRI analysis. Magnetic Resonance in Medicine, 61(4), 851-859. doi:10.1002/mrm.21912 es_ES
dc.description.references McGrath, D. M., Bradley, D. P., Tessier, J. L., Lacey, T., Taylor, C. J., & Parker, G. J. M. (2009). Comparison of model-based arterial input functions for dynamic contrast-enhanced MRI in tumor bearing rats. Magnetic Resonance in Medicine, 61(5), 1173-1184. doi:10.1002/mrm.21959 es_ES
dc.description.references Orton, M. R., d’ Arcy, J. A., Walker-Samuel, S., Hawkes, D. J., Atkinson, D., Collins, D. J., & Leach, M. O. (2008). Computationally efficient vascular input function models for quantitative kinetic modelling using DCE-MRI. Physics in Medicine and Biology, 53(5), 1225-1239. doi:10.1088/0031-9155/53/5/005 es_ES
dc.description.references Heisen, M., Fan, X., Buurman, J., van Riel, N. A. W., Karczmar, G. S., & ter Haar Romeny, B. M. (2010). The use of a reference tissue arterial input function with low-temporal-resolution DCE-MRI data. Physics in Medicine and Biology, 55(16), 4871-4883. doi:10.1088/0031-9155/55/16/016 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem