- -

Dynamic Reconfiguration of a RGBD Sensor Based on QoS and QoC Requirements in Distributed Systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dynamic Reconfiguration of a RGBD Sensor Based on QoS and QoC Requirements in Distributed Systems

Mostrar el registro completo del ítem

Munera Sánchez, E.; Poza-Lujan, J.; Posadas-Yagüe, J.; Simó Ten, JE.; Blanes Noguera, F. (2015). Dynamic Reconfiguration of a RGBD Sensor Based on QoS and QoC Requirements in Distributed Systems. Sensors. 15(8):18080-18101. https://doi.org/10.3390/s150818080

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/64912

Ficheros en el ítem

Metadatos del ítem

Título: Dynamic Reconfiguration of a RGBD Sensor Based on QoS and QoC Requirements in Distributed Systems
Autor: Munera Sánchez, Eduardo Poza-Lujan, Jose-Luis Posadas-Yagüe, Juan-Luis Simó Ten, José Enrique Blanes Noguera, Francisco
Entidad UPV: Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Fecha difusión:
Resumen:
The inclusion of embedded sensors into a networked system provides useful information for many applications. A Distributed Control System (DCS) is one of the clearest examples where processing and communications are ...[+]
Palabras clave: RGBD sensor , System reconfiguration , Quality of service (QoS) , Quality of context (QoC)
Derechos de uso: Reconocimiento (by)
Fuente:
Sensors. (issn: 1424-8220 )
DOI: 10.3390/s150818080
Editorial:
MDPI
Versión del editor: http://dx.doi.org/10.3390/s150818080
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//TIN2014-56158-C4-4-P/ES/CODISEÑO DE SISTEMAS DE CONTROL CON CRITICIDAD MIXTA BASADO EN MISIONES/
info:eu-repo/grantAgreement/UPV//PAID-FPI-2013/
Agradecimientos:
This work has been supported by the Spanish Science and Innovation Ministry MICINN under the CICYT project M2C2: "Codiseno de sistemas de control con criticidad mixta basado en misiones" TIN2014-56158-C4-4-P and the Programme ...[+]
Tipo: Artículo

References

Gupta, R. A., & Mo-Yuen Chow. (2010). Networked Control System: Overview and Research Trends. IEEE Transactions on Industrial Electronics, 57(7), 2527-2535. doi:10.1109/tie.2009.2035462

Morales, R., Badesa, F. J., García-Aracil, N., Perez-Vidal, C., & Sabater, J. M. (2012). Distributed Smart Device for Monitoring, Control and Management of Electric Loads in Domotic Environments. Sensors, 12(5), 5212-5224. doi:10.3390/s120505212

Zhang, Z. (2012). Microsoft Kinect Sensor and Its Effect. IEEE Multimedia, 19(2), 4-10. doi:10.1109/mmul.2012.24 [+]
Gupta, R. A., & Mo-Yuen Chow. (2010). Networked Control System: Overview and Research Trends. IEEE Transactions on Industrial Electronics, 57(7), 2527-2535. doi:10.1109/tie.2009.2035462

Morales, R., Badesa, F. J., García-Aracil, N., Perez-Vidal, C., & Sabater, J. M. (2012). Distributed Smart Device for Monitoring, Control and Management of Electric Loads in Domotic Environments. Sensors, 12(5), 5212-5224. doi:10.3390/s120505212

Zhang, Z. (2012). Microsoft Kinect Sensor and Its Effect. IEEE Multimedia, 19(2), 4-10. doi:10.1109/mmul.2012.24

Gonzalez-Jorge, H., Riveiro, B., Vazquez-Fernandez, E., Martínez-Sánchez, J., & Arias, P. (2013). Metrological evaluation of Microsoft Kinect and Asus Xtion sensors. Measurement, 46(6), 1800-1806. doi:10.1016/j.measurement.2013.01.011

Pordel, M., & Hellström, T. (2015). Semi-Automatic Image Labelling Using Depth Information. Computers, 4(2), 142-154. doi:10.3390/computers4020142

Zuehlke, D. (2010). SmartFactory—Towards a factory-of-things. Annual Reviews in Control, 34(1), 129-138. doi:10.1016/j.arcontrol.2010.02.008

Wang, X., Şekercioğlu, Y., & Drummond, T. (2014). Vision-Based Cooperative Pose Estimation for Localization in Multi-Robot Systems Equipped with RGB-D Cameras. Robotics, 4(1), 1-22. doi:10.3390/robotics4010001

Gil, P., Kisler, T., García, G. J., Jara, C. A., & Corrales, J. A. (2013). Calibración de cámaras de tiempo de vuelo: Ajuste adaptativo del tiempo de integración y análisis de la frecuencia de modulación. Revista Iberoamericana de Automática e Informática Industrial RIAI, 10(4), 453-464. doi:10.1016/j.riai.2013.08.002

Castrillón-Santan, M., Lorenzo-Navarro, J., & Hernández-Sosa, D. (2014). Conteo de personas con un sensor RGBD comercial. Revista Iberoamericana de Automática e Informática Industrial RIAI, 11(3), 348-357. doi:10.1016/j.riai.2014.05.006

Vogel, A., Kerherve, B., von Bochmann, G., & Gecsei, J. (1995). Distributed multimedia and QOS: a survey. IEEE Multimedia, 2(2), 10-19. doi:10.1109/93.388195

Eugster, P. T., Felber, P. A., Guerraoui, R., & Kermarrec, A.-M. (2003). The many faces of publish/subscribe. ACM Computing Surveys, 35(2), 114-131. doi:10.1145/857076.857078

Aurrecoechea, C., Campbell, A. T., & Hauw, L. (1998). A survey of QoS architectures. Multimedia Systems, 6(3), 138-151. doi:10.1007/s005300050083

Xu, W., Zhou, Z., Pham, D. T., Liu, Q., Ji, C., & Meng, W. (2012). Quality of service in manufacturing networks: a service framework and its implementation. The International Journal of Advanced Manufacturing Technology, 63(9-12), 1227-1237. doi:10.1007/s00170-012-3965-y

Kang, W., Son, S. H., & Stankovic, J. A. (2012). Design, Implementation, and Evaluation of a QoS-Aware Real-Time Embedded Database. IEEE Transactions on Computers, 61(1), 45-59. doi:10.1109/tc.2010.240

Poza-Lujan, J.-L., Posadas-Yagüe, J.-L., Simó-Ten, J.-E., Simarro, R., & Benet, G. (2015). Distributed Sensor Architecture for Intelligent Control that Supports Quality of Control and Quality of Service. Sensors, 15(3), 4700-4733. doi:10.3390/s150304700

Manzoor, A., Truong, H.-L., & Dustdar, S. (2014). Quality of Context: models and applications for context-aware systems in pervasive environments. The Knowledge Engineering Review, 29(2), 154-170. doi:10.1017/s0269888914000034

Cardellini, V., Casalicchio, E., Grassi, V., Iannucci, S., Presti, F. L., & Mirandola, R. (2012). MOSES: A Framework for QoS Driven Runtime Adaptation of Service-Oriented Systems. IEEE Transactions on Software Engineering, 38(5), 1138-1159. doi:10.1109/tse.2011.68

Nogueira, L., Pinho, L. M., & Coelho, J. (2012). A feedback-based decentralised coordination model for distributed open real-time systems. Journal of Systems and Software, 85(9), 2145-2159. doi:10.1016/j.jss.2012.04.033

del-Hoyo, R., Martín-del-Brío, B., Medrano, N., & Fernández-Navajas, J. (2009). Computational intelligence tools for next generation quality of service management. Neurocomputing, 72(16-18), 3631-3639. doi:10.1016/j.neucom.2009.01.016

Tian, Y.-C., Jiang, X., Levy, D. C., & Agrawala, A. (2012). Local Adjustment and Global Adaptation of Control Periods for QoC Management of Control Systems. IEEE Transactions on Control Systems Technology, 20(3), 846-854. doi:10.1109/tcst.2011.2141133

Vilalta, R., & Drissi, Y. (2002). Artificial Intelligence Review, 18(2), 77-95. doi:10.1023/a:1019956318069

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297. doi:10.1007/bf00994018

Yélamos, I., Escudero, G., Graells, M., & Puigjaner, L. (2009). Performance assessment of a novel fault diagnosis system based on support vector machines. Computers & Chemical Engineering, 33(1), 244-255. doi:10.1016/j.compchemeng.2008.08.008

Zhang, X., Qiu, D., & Chen, F. (2015). Support vector machine with parameter optimization by a novel hybrid method and its application to fault diagnosis. Neurocomputing, 149, 641-651. doi:10.1016/j.neucom.2014.08.010

Iplikci, S. (2010). Support vector machines based neuro-fuzzy control of nonlinear systems. Neurocomputing, 73(10-12), 2097-2107. doi:10.1016/j.neucom.2010.02.008

Ferrari, P., Flammini, A., & Sisinni, E. (2011). New Architecture for a Wireless Smart Sensor Based on a Software-Defined Radio. IEEE Transactions on Instrumentation and Measurement, 60(6), 2133-2141. doi:10.1109/tim.2011.2117090

Munera Sánchez, E., Muñoz Alcobendas, M., Blanes Noguera, J., Benet Gilabert, G., & Simó Ten, J. (2013). A Reliability-Based Particle Filter for Humanoid Robot Self-Localization in RoboCup Standard Platform League. Sensors, 13(11), 14954-14983. doi:10.3390/s131114954

Adams, R., & Bischof, L. (1994). Seeded region growing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(6), 641-647. doi:10.1109/34.295913

JIMÉNEZ-GARCÍA, J.-L., BASELGA-MASIA, D., POZA-LUJÁN, J.-L., MUNERA, E., POSADAS-YAGÜE, J.-L., & SIMÓ-TEN, J.-E. (2014). Smart device definition and application on embedded system: performance and optimi-zation on a RGBD sensor. ADCAIJ: ADVANCES IN DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE JOURNAL, 3(8), 46. doi:10.14201/adcaij2014384655

Feng-Li Lian, Moyne, J., & Tilbury, D. (2002). Network design consideration for distributed control systems. IEEE Transactions on Control Systems Technology, 10(2), 297-307. doi:10.1109/87.987076

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem