- -

Dynamic Reconfiguration of a RGBD Sensor Based on QoS and QoC Requirements in Distributed Systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dynamic Reconfiguration of a RGBD Sensor Based on QoS and QoC Requirements in Distributed Systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Munera Sánchez, Eduardo es_ES
dc.contributor.author Poza-Lujan, Jose-Luis es_ES
dc.contributor.author Posadas-Yagüe, Juan-Luis es_ES
dc.contributor.author Simó Ten, José Enrique es_ES
dc.contributor.author Blanes Noguera, Francisco es_ES
dc.date.accessioned 2016-05-30T09:55:54Z
dc.date.available 2016-05-30T09:55:54Z
dc.date.issued 2015
dc.identifier.issn 1424-8220
dc.identifier.uri http://hdl.handle.net/10251/64912
dc.description.abstract The inclusion of embedded sensors into a networked system provides useful information for many applications. A Distributed Control System (DCS) is one of the clearest examples where processing and communications are constrained by the client s requirements and the capacity of the system. An embedded sensor with advanced processing and communications capabilities supplies high level information, abstracting from the data acquisition process and objects recognition mechanisms. The implementation of an embedded sensor/actuator as a Smart Resource permits clients to access sensor information through distributed network services. Smart resources can offer sensor services as well as computing, communications and peripheral access by implementing a self-aware based adaptation mechanism which adapts the execution profile to the context. On the other hand, information integrity must be ensured when computing processes are dynamically adapted. Therefore, the processing must be adapted to perform tasks in a certain lapse of time but always ensuring a minimum process quality. In the same way, communications must try to reduce the data traffic without excluding relevant information. The main objective of the paper is to present a dynamic configuration mechanism to adapt the sensor processing and communication to the client s requirements in the DCS. This paper describes an implementation of a smart resource based on a Red, Green, Blue, and Depth (RGBD) sensor in order to test the dynamic configuration mechanism presented. es_ES
dc.description.sponsorship This work has been supported by the Spanish Science and Innovation Ministry MICINN under the CICYT project M2C2: "Codiseno de sistemas de control con criticidad mixta basado en misiones" TIN2014-56158-C4-4-P and the Programme for Research and Development PAID of the Polytechnic University of Valencia: UPV-PAID-FPI-2013. The responsibility for the content remains with the authors. en_EN
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject RGBD sensor es_ES
dc.subject System reconfiguration es_ES
dc.subject Quality of service (QoS) es_ES
dc.subject Quality of context (QoC) es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Dynamic Reconfiguration of a RGBD Sensor Based on QoS and QoC Requirements in Distributed Systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s150818080
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2014-56158-C4-4-P/ES/CODISEÑO DE SISTEMAS DE CONTROL CON CRITICIDAD MIXTA BASADO EN MISIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-FPI-2013/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Munera Sánchez, E.; Poza-Lujan, J.; Posadas-Yagüe, J.; Simó Ten, JE.; Blanes Noguera, F. (2015). Dynamic Reconfiguration of a RGBD Sensor Based on QoS and QoC Requirements in Distributed Systems. Sensors. 15(8):18080-18101. https://doi.org/10.3390/s150818080 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.3390/s150818080
dc.description.upvformatpinicio 18080 es_ES
dc.description.upvformatpfin 18101 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 8 es_ES
dc.relation.senia 295108 es_ES
dc.identifier.pmid 26213939 en_EN
dc.identifier.pmcid PMC4570308 en_EN
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Gupta, R. A., & Mo-Yuen Chow. (2010). Networked Control System: Overview and Research Trends. IEEE Transactions on Industrial Electronics, 57(7), 2527-2535. doi:10.1109/tie.2009.2035462 es_ES
dc.description.references Morales, R., Badesa, F. J., García-Aracil, N., Perez-Vidal, C., & Sabater, J. M. (2012). Distributed Smart Device for Monitoring, Control and Management of Electric Loads in Domotic Environments. Sensors, 12(5), 5212-5224. doi:10.3390/s120505212 es_ES
dc.description.references Zhang, Z. (2012). Microsoft Kinect Sensor and Its Effect. IEEE Multimedia, 19(2), 4-10. doi:10.1109/mmul.2012.24 es_ES
dc.description.references Gonzalez-Jorge, H., Riveiro, B., Vazquez-Fernandez, E., Martínez-Sánchez, J., & Arias, P. (2013). Metrological evaluation of Microsoft Kinect and Asus Xtion sensors. Measurement, 46(6), 1800-1806. doi:10.1016/j.measurement.2013.01.011 es_ES
dc.description.references Pordel, M., & Hellström, T. (2015). Semi-Automatic Image Labelling Using Depth Information. Computers, 4(2), 142-154. doi:10.3390/computers4020142 es_ES
dc.description.references Zuehlke, D. (2010). SmartFactory—Towards a factory-of-things. Annual Reviews in Control, 34(1), 129-138. doi:10.1016/j.arcontrol.2010.02.008 es_ES
dc.description.references Wang, X., Şekercioğlu, Y., & Drummond, T. (2014). Vision-Based Cooperative Pose Estimation for Localization in Multi-Robot Systems Equipped with RGB-D Cameras. Robotics, 4(1), 1-22. doi:10.3390/robotics4010001 es_ES
dc.description.references Gil, P., Kisler, T., García, G. J., Jara, C. A., & Corrales, J. A. (2013). Calibración de cámaras de tiempo de vuelo: Ajuste adaptativo del tiempo de integración y análisis de la frecuencia de modulación. Revista Iberoamericana de Automática e Informática Industrial RIAI, 10(4), 453-464. doi:10.1016/j.riai.2013.08.002 es_ES
dc.description.references Castrillón-Santan, M., Lorenzo-Navarro, J., & Hernández-Sosa, D. (2014). Conteo de personas con un sensor RGBD comercial. Revista Iberoamericana de Automática e Informática Industrial RIAI, 11(3), 348-357. doi:10.1016/j.riai.2014.05.006 es_ES
dc.description.references Vogel, A., Kerherve, B., von Bochmann, G., & Gecsei, J. (1995). Distributed multimedia and QOS: a survey. IEEE Multimedia, 2(2), 10-19. doi:10.1109/93.388195 es_ES
dc.description.references Eugster, P. T., Felber, P. A., Guerraoui, R., & Kermarrec, A.-M. (2003). The many faces of publish/subscribe. ACM Computing Surveys, 35(2), 114-131. doi:10.1145/857076.857078 es_ES
dc.description.references Aurrecoechea, C., Campbell, A. T., & Hauw, L. (1998). A survey of QoS architectures. Multimedia Systems, 6(3), 138-151. doi:10.1007/s005300050083 es_ES
dc.description.references Xu, W., Zhou, Z., Pham, D. T., Liu, Q., Ji, C., & Meng, W. (2012). Quality of service in manufacturing networks: a service framework and its implementation. The International Journal of Advanced Manufacturing Technology, 63(9-12), 1227-1237. doi:10.1007/s00170-012-3965-y es_ES
dc.description.references Kang, W., Son, S. H., & Stankovic, J. A. (2012). Design, Implementation, and Evaluation of a QoS-Aware Real-Time Embedded Database. IEEE Transactions on Computers, 61(1), 45-59. doi:10.1109/tc.2010.240 es_ES
dc.description.references Poza-Lujan, J.-L., Posadas-Yagüe, J.-L., Simó-Ten, J.-E., Simarro, R., & Benet, G. (2015). Distributed Sensor Architecture for Intelligent Control that Supports Quality of Control and Quality of Service. Sensors, 15(3), 4700-4733. doi:10.3390/s150304700 es_ES
dc.description.references Manzoor, A., Truong, H.-L., & Dustdar, S. (2014). Quality of Context: models and applications for context-aware systems in pervasive environments. The Knowledge Engineering Review, 29(2), 154-170. doi:10.1017/s0269888914000034 es_ES
dc.description.references Cardellini, V., Casalicchio, E., Grassi, V., Iannucci, S., Presti, F. L., & Mirandola, R. (2012). MOSES: A Framework for QoS Driven Runtime Adaptation of Service-Oriented Systems. IEEE Transactions on Software Engineering, 38(5), 1138-1159. doi:10.1109/tse.2011.68 es_ES
dc.description.references Nogueira, L., Pinho, L. M., & Coelho, J. (2012). A feedback-based decentralised coordination model for distributed open real-time systems. Journal of Systems and Software, 85(9), 2145-2159. doi:10.1016/j.jss.2012.04.033 es_ES
dc.description.references del-Hoyo, R., Martín-del-Brío, B., Medrano, N., & Fernández-Navajas, J. (2009). Computational intelligence tools for next generation quality of service management. Neurocomputing, 72(16-18), 3631-3639. doi:10.1016/j.neucom.2009.01.016 es_ES
dc.description.references Tian, Y.-C., Jiang, X., Levy, D. C., & Agrawala, A. (2012). Local Adjustment and Global Adaptation of Control Periods for QoC Management of Control Systems. IEEE Transactions on Control Systems Technology, 20(3), 846-854. doi:10.1109/tcst.2011.2141133 es_ES
dc.description.references Vilalta, R., & Drissi, Y. (2002). Artificial Intelligence Review, 18(2), 77-95. doi:10.1023/a:1019956318069 es_ES
dc.description.references Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297. doi:10.1007/bf00994018 es_ES
dc.description.references Yélamos, I., Escudero, G., Graells, M., & Puigjaner, L. (2009). Performance assessment of a novel fault diagnosis system based on support vector machines. Computers & Chemical Engineering, 33(1), 244-255. doi:10.1016/j.compchemeng.2008.08.008 es_ES
dc.description.references Zhang, X., Qiu, D., & Chen, F. (2015). Support vector machine with parameter optimization by a novel hybrid method and its application to fault diagnosis. Neurocomputing, 149, 641-651. doi:10.1016/j.neucom.2014.08.010 es_ES
dc.description.references Iplikci, S. (2010). Support vector machines based neuro-fuzzy control of nonlinear systems. Neurocomputing, 73(10-12), 2097-2107. doi:10.1016/j.neucom.2010.02.008 es_ES
dc.description.references Ferrari, P., Flammini, A., & Sisinni, E. (2011). New Architecture for a Wireless Smart Sensor Based on a Software-Defined Radio. IEEE Transactions on Instrumentation and Measurement, 60(6), 2133-2141. doi:10.1109/tim.2011.2117090 es_ES
dc.description.references Munera Sánchez, E., Muñoz Alcobendas, M., Blanes Noguera, J., Benet Gilabert, G., & Simó Ten, J. (2013). A Reliability-Based Particle Filter for Humanoid Robot Self-Localization in RoboCup Standard Platform League. Sensors, 13(11), 14954-14983. doi:10.3390/s131114954 es_ES
dc.description.references Adams, R., & Bischof, L. (1994). Seeded region growing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(6), 641-647. doi:10.1109/34.295913 es_ES
dc.description.references JIMÉNEZ-GARCÍA, J.-L., BASELGA-MASIA, D., POZA-LUJÁN, J.-L., MUNERA, E., POSADAS-YAGÜE, J.-L., & SIMÓ-TEN, J.-E. (2014). Smart device definition and application on embedded system: performance and optimi-zation on a RGBD sensor. ADCAIJ: ADVANCES IN DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE JOURNAL, 3(8), 46. doi:10.14201/adcaij2014384655 es_ES
dc.description.references Feng-Li Lian, Moyne, J., & Tilbury, D. (2002). Network design consideration for distributed control systems. IEEE Transactions on Control Systems Technology, 10(2), 297-307. doi:10.1109/87.987076 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem