- -

Inductive programming meets the real world

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Inductive programming meets the real world

Mostrar el registro completo del ítem

Gulwani, S.; Hernández-Orallo, J.; Kitzelmann, E.; Muggleton, SH.; Schmid, U.; Zorn, B. (2015). Inductive programming meets the real world. Communications of the ACM. 58(11):90-99. doi:10.1145/2736282

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/64984

Ficheros en el ítem

Metadatos del ítem

Título: Inductive programming meets the real world
Autor: Gulwani, Sumit Hernández-Orallo, José Kitzelmann, Emanuel Muggleton, Stephen H. Schmid, Ute Zorn, Benjamin
Entidad UPV: Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Fecha difusión:
Resumen:
[EN] Since most end users lack programming skills they often spend considerable time and effort performing tedious and repetitive tasks such as capitalizing a column of names manually. Inductive Programming has a long ...[+]
Palabras clave: Inductive programming
Derechos de uso: Reserva de todos los derechos
Fuente:
Communications of the ACM. (issn: 0001-0782 )
DOI: 10.1145/2736282
Editorial:
Association for Computing Machinery (ACM)
Versión del editor: http://dx.doi.org/10.1145/2736282
Descripción: © Gulwani, S. et al. | ACM 2015. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in Communications of the ACM, http://dx.doi.org/10.1145/2736282
Tipo: Artículo

References

Bengio, Y., Courville, A. and Vincent, P. Representation learning: A review and new perspectives.Pattern Analy. Machine Intell. 35, 8 (2013), 1798--1828.

Bielawski, B. Using the convertfrom-string cmdlet to parse structured text.PowerShell Magazine, (Sept. 9, 2004); http://www.powershellmagazine.com/2014/09/09/using-the-convertfrom-string-cmdlet-to-parse-structured-text/

Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka-Jr, E.R. and T.M. Mitchell, T.M. Toward an architecture for never-ending language learning. InAAAI, 2010. [+]
Bengio, Y., Courville, A. and Vincent, P. Representation learning: A review and new perspectives.Pattern Analy. Machine Intell. 35, 8 (2013), 1798--1828.

Bielawski, B. Using the convertfrom-string cmdlet to parse structured text.PowerShell Magazine, (Sept. 9, 2004); http://www.powershellmagazine.com/2014/09/09/using-the-convertfrom-string-cmdlet-to-parse-structured-text/

Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka-Jr, E.R. and T.M. Mitchell, T.M. Toward an architecture for never-ending language learning. InAAAI, 2010.

Chandola, V., Banerjee, A. and V. Kumar, V. Anomaly detection: A survey.ACM Computing Surveys 41, 3 (2009), 15.

Cypher, A. (Ed).Watch What I Do: Programming by Demonstration.MIT Press, Cambridge, MA, 1993.

Ferri-Ramírez, C., Hernández-Orallo, J. and Ramírez-Quintana, M.J. Incremental learning of functional logic programs. InProceedings of FLOPS, 2001, 233--247.

Flener, P. and Schmid, U. An introduction to inductive programming.AI Review 29, 1 (2009), 45--62.

Gulwani, S. Dimensions in program synthesis. InProceedings of PPDP, 2010.

Gulwani, S. Automating string processing in spreadsheets using input-output examples. InProceedings of POPL, 2011; http://research.microsoft.com/users/sumitg/flashfill.html.

Gulwani, S. Example-based learning in computer-aided STEM education.Commun. ACM 57, 8 (Aug 2014), 70--80.

Gulwani, S., Harris, W. and Singh, R. Spreadsheet data manipulation using examples.Commun. ACM 55, 8 (Aug. 2012), 97--105.

Henderson, R.J. and Muggleton, S.H. Automatic invention of functional abstractions.Latest Advances in Inductive Logic Programming, 2012.

Hernández-Orallo, J. Deep knowledge: Inductive programming as an answer, Dagstuhl TR 13502, 2013.

Hofmann, M. and Kitzelmann, E. I/O guided detection of list catamorphisms---towards problem specific use of program templates in IP. InACM SIGPLAN PEPM, 2010.

Jha, J., Gulwani, S., Seshia, S. and Tiwari, A. Oracle-guided component-based program synthesis. InProceedings of the ICSE, 2010.

Katayama, S. Efficient exhaustive generation of functional programs using Monte-Carlo search with iterative deepening. InProceedings of PRICAI, 2008.

Kitzelmann, E. Analytical inductive functional programming.LOPSTR 2008, LNCS 5438.Springer, 2009, 87--102.

Kitzelmann, E. Inductive programming: A survey of program synthesis techniques. InAAIP, Springer, 2010, 50--73.

Kitzelmann, E. and Schmid, U. Inductive synthesis of functional programs: An explanation based generalization approach.J. Machine Learning Research 7, (Feb. 2006), 429--454.

Kotovsky, K., Hayes, J.R. and Simon, H.A. Why are some problems hard? Evidence from Tower of Hanoi.Cognitive Psychology 17, 2 (1985), 248--294.

Lau, T.A. Why programming-by-demonstration systems fail: Lessons learned for usable AI.AI Mag. 30, 4, (2009), 65--67.

Lau, T.A., Wolfman, S.A., Domingos, P. and Weld, D.S. Programming by demonstration using version space algebra.Machine Learning 53, 1-2 (2003), 111--156.

Le, V. and Gulwani, S. FlashExtract: A framework for data extraction by examples. InProceedings of PLDI, 2014.

Lieberman, H. (Ed).Your Wish is My Command: Programming by Example.Morgan Kaufmann, 2001.

Lin, D., Dechter, E., Ellis, K., Tenenbaum, J.B. and Muggleton, S.H. Bias reformulation for one-shot function induction. InProceedings of ECAI, 2014.

Marcus, G.F. The Algebraic Mind.Integrating Connectionism and Cognitive Science.Bradford, Cambridge, MA, 2001.

Martìnez-Plumed, C. Ferri, Hernández-Orallo, J. and M.J. Ramírez-Quintana. On the definition of a general learning system with user-defined operators.arXiv preprint arXiv:1311.4235, 2013.

Menon, A., Tamuz, O., Gulwani, S., Lampson, B. and Kalai, A. A machine learning framework for programming by example. InProceedings of the ICML, 2013.

Miller, R.C. and Myers, B.A. Multiple selections in smart text editing. InProceedings of IUI, 2002, 103--110.

Muggleton, S.H. Inductive Logic Programming.New Generation Computing 8, 4 (1991), 295--318.

Muggleton, S.H. and Lin, D. Meta-interpretive learning of higher-order dyadic datalog: Predicate invention revisited.IJCAI 2013, 1551--1557.

Muggleton, S.H., Lin, D., Pahlavi, N. and Tamaddoni-Nezhad, A. Meta-interpretive learning: application to grammatical inference.Machine Learning 94(2014), 25--49.

Muggleton, S.H., De Raedt, L., Poole, D., Bratko, I., Flach, P. and Inoue, P. ILP turns 20: Biography and future challenges.Machine Learning 86, 1 (2011), 3--23.

Olsson, R. Inductive functional programming using incremental program transformation.Artificial Intelligence 74, 1 (1995), 55--83.

Perelman, D., Gulwani, S., Grossman, D. and Provost, P. Test-driven synthesis.PLDI, 2014.

Raza, M., Gulwani, S. and Milic-Frayling, N. Programming by example using least general generalizations.AAAI, 2014.

Schmid, U. and Kitzelmann, E. Inductive rule learning on the knowledge level.Cognitive Systems Research 12, 3 (2011), 237--248.

Schmid, U. and Wysotzki, F. Induction of recursive program schemes.ECML 1398 LNAI(1998), 214--225.

Shapiro, E.Y. An algorithm that infers theories from facts.IJCAI(1981), 446--451.

Solar-Lezama, A.Program Synthesis by Sketching.Ph.D thesis, UC Berkeley, 2008.

Summers, P.D. A methodology for LISP program construction from examples.JACM 24, 1 (1977), 162--175.

Tenenbaum, J.B., Griffiths, T.L. and Kemp, C. Theory-based Bayesian models of inductive learning and reasoning.Trends in Cognitive Sciences 10, 7 (2006), 309--318.

Young, S. Cognitive user interfaces.IEEE Signal Processing 27, 3 (2010), 128--140.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem