- -

Relationships among slurry characteristics and gaseous emissions at different types of commercial Spanish pig farms

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Relationships among slurry characteristics and gaseous emissions at different types of commercial Spanish pig farms

Show full item record

Beccaccia, A.; Ferrer Riera, P.; Ibáñez, MÁ.; Estellés, F.; Rodríguez, C.; Moset, V.; Blas, CD.... (2015). Relationships among slurry characteristics and gaseous emissions at different types of commercial Spanish pig farms. Spanish Journal of Agricultural Research. 13(1):1-15. doi:10.5424/sjar/2015131-6575

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/65110

Files in this item

Item Metadata

Title: Relationships among slurry characteristics and gaseous emissions at different types of commercial Spanish pig farms
Author:
UPV Unit: Universitat Politècnica de València. Instituto de Ciencia y Tecnología Animal - Institut de Ciència i Tecnologia Animal
Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal
Issued date:
Abstract:
[EN] This study aimed to analyse several factors of variation of slurry composition and to establish prediction equations for potential methane (CH4) and ammonia (NH3) emissions. Seventy-nine feed and slurry samples were ...[+]
Subjects: Ammonia , methane , NIRS , animal nutrition , prediction model
Copyrigths: Reserva de todos los derechos
Source:
Spanish Journal of Agricultural Research. (issn: 1695-971X )
DOI: 10.5424/sjar/2015131-6575
Publisher:
Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)
Publisher version: https://dx.doi.org/10.5424/sjar/2015131-6575
Thanks:
This research was supported by the Spanish Ministerio de Ciencia e Innovacion (project AGL2011-30023) and the Valencian Government (Project ACOMP/2013/118).
Type: Artículo

References

Aarnink, A. J. A., & Verstegen, M. W. A. (2007). Nutrition, key factor to reduce environmental load from pig production. Livestock Science, 109(1-3), 194-203. doi:10.1016/j.livsci.2007.01.112

Alvarez-Rodriguez, J., Hermida, B., Parera, J., Morazán, H., Balcells, J., & Babot, D. (2013). The influence of drinker device on water use and fertiliser value of slurry from growing-finishing pigs. Animal Production Science, 53(4), 328. doi:10.1071/an12136

Angelidaki, I., & Sanders, W. (2004). Assessment of the anaerobic biodegradability of macropollutants. Reviews in Environmental Science and Bio/Technology, 3(2), 117-129. doi:10.1007/s11157-004-2502-3 [+]
Aarnink, A. J. A., & Verstegen, M. W. A. (2007). Nutrition, key factor to reduce environmental load from pig production. Livestock Science, 109(1-3), 194-203. doi:10.1016/j.livsci.2007.01.112

Alvarez-Rodriguez, J., Hermida, B., Parera, J., Morazán, H., Balcells, J., & Babot, D. (2013). The influence of drinker device on water use and fertiliser value of slurry from growing-finishing pigs. Animal Production Science, 53(4), 328. doi:10.1071/an12136

Angelidaki, I., & Sanders, W. (2004). Assessment of the anaerobic biodegradability of macropollutants. Reviews in Environmental Science and Bio/Technology, 3(2), 117-129. doi:10.1007/s11157-004-2502-3

AOAC, 2000. Official methods of analysis, 15th ed. (Harwitte W, Ed.). Association of Official Analytical Chemists. Washington, USA.

APHA, 2005. Standard methods for the examination of water and wastewater. Centennial Edition, Baltimore, MD, USA.

Barnes, R. J., Dhanoa, M. S., & Lister, S. J. (1989). Standard Normal Variate Transformation and De-Trending of Near-Infrared Diffuse Reflectance Spectra. Applied Spectroscopy, 43(5), 772-777. doi:10.1366/0003702894202201

Bietresato, M., & Sartori, L. (2013). Technical aspects concerning the detection of animal waste nutrient content via its electrical characteristics. Bioresource Technology, 132, 127-136. doi:10.1016/j.biortech.2012.12.184

Bindelle, J., Buldgen, A., Delacollette, M., Wavreille, J., Agneessens, R., Destain, J. P., & Leterme, P. (2009). Influence of source and concentrations of dietary fiber on in vivo nitrogen excretion pathways in pigs as reflected by in vitro fermentation and nitrogen incorporation by fecal bacteria123. Journal of Animal Science, 87(2), 583-593. doi:10.2527/jas.2007-0717

Box GEP, Cox DR, 1964. An analysis of transformations. J R Stat Soc B 26: 211-246.

Canh TT, Verstegen MWA, Aarnink AJA, Schrama JW, 1997. Influence of dietary factors on nitrogen partitioning and composition of urine and faeces of fattening pigs. J Anim Sci 75: 700-706.

Canh, T. ., Aarnink, A. J. ., Schutte, J. ., Sutton, A., Langhout, D. ., & Verstegen, M. W. . (1998). Dietary protein affects nitrogen excretion and ammonia emission from slurry of growing–finishing pigs. Livestock Production Science, 56(3), 181-191. doi:10.1016/s0301-6226(98)00156-0

Chen, L., Xing, L., Han, L., & Yang, Z. (2009). Evaluation of physicochemical models for rapidly estimating pig manure nutrient content. Biosystems Engineering, 103(3), 313-320. doi:10.1016/j.biosystemseng.2009.04.007

Conn, K. L., Topp, E., & Lazarovits, G. (2007). Factors Influencing the Concentration of Volatile Fatty Acids, Ammonia, and Other Nutrients in Stored Liquid Pig Manure. Journal of Environment Quality, 36(2), 440. doi:10.2134/jeq2006.0222

Dinuccio, E., Berg, W., & Balsari, P. (2008). Gaseous emissions from the storage of untreated slurries and the fractions obtained after mechanical separation. Atmospheric Environment, 42(10), 2448-2459. doi:10.1016/j.atmosenv.2007.12.022

Doublet, J., Boulanger, A., Ponthieux, A., Laroche, C., Poitrenaud, M., & Cacho Rivero, J. A. (2013). Predicting the biochemical methane potential of wide range of organic substrates by near infrared spectroscopy. Bioresource Technology, 128, 252-258. doi:10.1016/j.biortech.2012.10.044

FEDNA, 2010. Tablas FEDNA de composición y valor nutritivo de alimentos para la fabricación de piensos compuestos, 3rd ed. (de Blas C, Mateos GG, García-Rebollar P, Eds). Fundación Espa-ola para el Desarrollo de la Nutrición Animal, Madrid, Spain, 502 pp.

Galassi, G., Colombini, S., Malagutti, L., Crovetto, G. M., & Rapetti, L. (2010). Effects of high fibre and low protein diets on performance, digestibility, nitrogen excretion and ammonia emission in the heavy pig. Animal Feed Science and Technology, 161(3-4), 140-148. doi:10.1016/j.anifeedsci.2010.08.009

Halas, D., Hansen, C. F., Hampson, D. J., Kim, J.-C., Mullan, B. P., Wilson, R. H., & Pluske, J. R. (2010). Effects of benzoic acid and inulin on ammonia–nitrogen excretion, plasma urea levels, and the pH in faeces and urine of weaner pigs. Livestock Science, 134(1-3), 243-245. doi:10.1016/j.livsci.2010.06.153

Hayes, E. ., Leek, A. B. ., Curran, T. ., Dodd, V. ., Carton, O. ., Beattie, V. ., & O’Doherty, J. . (2004). The influence of diet crude protein level on odour and ammonia emissions from finishing pig houses. Bioresource Technology, 91(3), 309-315. doi:10.1016/s0960-8524(03)00184-6

Hernández, F., Martínez, S., López, C., Megías, M. D., López, M., & Madrid, J. (2011). Effect of dietary crude protein levels in a commercial range, on the nitrogen balance, ammonia emission and pollutant characteristics of slurry in fattening pigs. Animal, 5(8), 1290-1298. doi:10.1017/s1751731111000115

Huang, G., Han, L., & Liu, X. (2007). Rapid Estimation of the Composition of Animal Manure Compost by near Infrared Reflectance Spectroscopy. Journal of Near Infrared Spectroscopy, 15(6), 387-394. doi:10.1255/jnirs.745

Jarret, G., Cerisuelo, A., Peu, P., Martinez, J., & Dourmad, J.-Y. (2012). Impact of pig diets with different fibre contents on the composition of excreta and their gaseous emissions and anaerobic digestion. Agriculture, Ecosystems & Environment, 160, 51-58. doi:10.1016/j.agee.2011.05.029

Jørgensen, H. (2007). Methane emission by growing pigs and adult sows as influenced by fermentation. Livestock Science, 109(1-3), 216-219. doi:10.1016/j.livsci.2007.01.142

Jouany JP, 1982. Volatile fatty acid and alcohol determination in digestive contents, silage juices, bacterial cultures and anaerobic fermentor contents. Sci Alimen 2: 131-144.

Kerr BJ, Ziemer SL, Trabue SL, Crouse JD, Parkin TB, 2006. Manure composition of swine as affected by dietary protein and cellulose concentrations. J Anim Sci 84: 1584-1592.

Kreuzer, M., Wittmann, M., Gerdemann, M. M., Hanneken, H., Abel, H., & Machmuller, A. (1999). Re-examination of the metabolizable energy contents of various rations containing different types and levels of bacterially fermentable substrates in digestibility experiments with growing pigs. Journal of Animal Physiology and Animal Nutrition, 82(1), 33-49. doi:10.1046/j.1439-0396.1999.00218.x

Licitra, G., Hernandez, T. M., & Van Soest, P. J. (1996). Standardization of procedures for nitrogen fractionation of ruminant feeds. Animal Feed Science and Technology, 57(4), 347-358. doi:10.1016/0377-8401(95)00837-3

Liu, Z., Powers, W., & Liu, H. (2013). Greenhouse gas emissions from swine operations: Evaluation of the Intergovernmental Panel on Climate Change approaches through meta-analysis1. Journal of Animal Science, 91(8), 4017-4032. doi:10.2527/jas.2012-6147

Malley, D. F., Yesmin, L., & Eilers, R. G. (2002). Rapid Analysis of Hog Manure and Manure-amended Soils Using Near-infrared Spectroscopy. Soil Science Society of America Journal, 66(5), 1677. doi:10.2136/sssaj2002.1677

Martinez-Suller L, Provolo G, Carton OT, Brennan D, Kirwan L, Richards KG, 2010. The composition of dirty water on dairy farms in Ireland. Irish J Agr Food Res 49: 67-80.

Mertens DR, 2002. Gravimetric determination of amylase-treated neutral detergent fibre in feeds with refluxing beakers or crucibles: collaborative study. J AOAC Int 85: 1217-1240.

Møller, H. B., Sommer, S. G., & Ahring, B. K. (2004). Methane productivity of manure, straw and solid fractions of manure. Biomass and Bioenergy, 26(5), 485-495. doi:10.1016/j.biombioe.2003.08.008

Møller, H. B., Sommer, S. G., & Ahring, B. K. (2004). Biological Degradation and Greenhouse Gas Emissions during Pre-Storage of Liquid Animal Manure. Journal of Environment Quality, 33(1), 27. doi:10.2134/jeq2004.2700

Montalvo, G., Morales, J., Pineiro, C., Godbout, S., & Bigeriego, M. (2013). Effect of different dietary strategies on gas emissions and growth performance in post- weaned piglets. Spanish Journal of Agricultural Research, 11(4), 1016. doi:10.5424/sjar/2013114-3185

Moral, R., Perez-Murcia, M. D., Perez-Espinosa, A., Moreno-Caselles, J., Paredes, C., & Rufete, B. (2008). Salinity, organic content, micronutrients and heavy metals in pig slurries from South-eastern Spain. Waste Management, 28(2), 367-371. doi:10.1016/j.wasman.2007.01.009

Pereira, J., Misselbrook, T. H., Chadwick, D. R., Coutinho, J., & Trindade, H. (2012). Effects of temperature and dairy cattle excreta characteristics on potential ammonia and greenhouse gas emissions from housing: A laboratory study. Biosystems Engineering, 112(2), 138-150. doi:10.1016/j.biosystemseng.2012.03.011

Portejoie, S., Dourmad, J. Y., Martinez, J., & Lebreton, Y. (2004). Effect of lowering dietary crude protein on nitrogen excretion, manure composition and ammonia emission from fattening pigs. Livestock Production Science, 91(1-2), 45-55. doi:10.1016/j.livprodsci.2004.06.013

Reeves, J. B. (2007). The present status of «quick tests» for on-farm analysis with emphasis on manures and soil: What is available and what is lacking? Livestock Science, 112(3), 224-231. doi:10.1016/j.livsci.2007.09.009

Saeys, W., Mouazen, A. M., & Ramon, H. (2005). Potential for Onsite and Online Analysis of Pig Manure using Visible and Near Infrared Reflectance Spectroscopy. Biosystems Engineering, 91(4), 393-402. doi:10.1016/j.biosystemseng.2005.05.001

Sánchez, M., & González, J. L. (2005). The fertilizer value of pig slurry. I. Values depending on the type of operation. Bioresource Technology, 96(10), 1117-1123. doi:10.1016/j.biortech.2004.10.002

Shenk JS, Westerhaus MO, 1996. Calibration of ISI way. In: Near infrared spectroscopy: the future waves (Davies AMC, Williams P, eds). NIR Publ., Chichester, West Sussex, UK, pp: 198-202.

Snoek, D. J. W., Stigter, J. D., Ogink, N. W. M., & Groot Koerkamp, P. W. G. (2014). Sensitivity analysis of mechanistic models for estimating ammonia emission from dairy cow urine puddles. Biosystems Engineering, 121, 12-24. doi:10.1016/j.biosystemseng.2014.02.003

Soares, M., & Lopez-Bote, C. . (2002). Effects of dietary lecithin and fat unsaturation on nutrient utilisation in weaned piglets. Animal Feed Science and Technology, 95(3-4), 169-177. doi:10.1016/s0377-8401(01)00324-8

Sørensen, L. K., Sørensen, P., & Birkmose, T. S. (2007). Application of Reflectance Near Infrared Spectroscopy for Animal Slurry Analyses. Soil Science Society of America Journal, 71(4), 1398. doi:10.2136/sssaj2006.330

Tamminga, S. (2003). Pollution due to nutrient losses and its control in European animal production. Livestock Production Science, 84(2), 101-111. doi:10.1016/j.livprodsci.2003.09.008

Triolo, J. M., Sommer, S. G., Møller, H. B., Weisbjerg, M. R., & Jiang, X. Y. (2011). A new algorithm to characterize biodegradability of biomass during anaerobic digestion: Influence of lignin concentration on methane production potential. Bioresource Technology, 102(20), 9395-9402. doi:10.1016/j.biortech.2011.07.026

Triolo, J. M., Ward, A. J., Pedersen, L., Løkke, M. M., Qu, H., & Sommer, S. G. (2014). Near Infrared Reflectance Spectroscopy (NIRS) for rapid determination of biochemical methane potential of plant biomass. Applied Energy, 116, 52-57. doi:10.1016/j.apenergy.2013.11.006

Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science, 74(10), 3583-3597. doi:10.3168/jds.s0022-0302(91)78551-2

Van Soest PJ, 1994. Nutritional ecology of the ruminant, 2nd edition. Cornell Univ Press, USA, 476 pp.

Vedrenne, F., Béline, F., Dabert, P., & Bernet, N. (2008). The effect of incubation conditions on the laboratory measurement of the methane producing capacity of livestock wastes. Bioresource Technology, 99(1), 146-155. doi:10.1016/j.biortech.2006.11.043

Von Heimendahl, E., Breves, G., & Abel, H. (2010). Fiber-related digestive processes in three different breeds of pigs12. Journal of Animal Science, 88(3), 972-981. doi:10.2527/jas.2009-2370

Williams PC, Sobering D, 1996. How do we do it: a brief summary of the methods we use in developing near infrared calibrations. In: Near infrared spectroscopy: the future waves (Davies AMC, Williams P, eds). NIR Publ., Chichester, West Sussex, UK, pp: 185-188.

Williams PC, 2001. Implementation of near-infrared technology. In: Near-infrared technology in the agricultural and food industries, 2nd ed (Williams PC, Norris K, Eds.). Am Assoc Cereal Chemists Inc., St. Paul, MN, USA, pp: 145-169.

Yagüe, M. R., Bosch-Serra, À. D., & Boixadera, J. (2012). Measurement and estimation of the fertiliser value of pig slurry by physicochemical models: Usefulness and constraints. Biosystems Engineering, 111(2), 206-216. doi:10.1016/j.biosystemseng.2011.11.013

W. Ye, J. C. Lorimor, C. Hurburgh, H. Zhang, & J. Hattey. (2005). APPLICATION OF NEAR-INFRARED REFLECTANCE SPECTROSCOPY FOR DETERMINATION OF NUTRIENT CONTENTS IN LIQUID AND SOLID MANURES. Transactions of the ASAE, 48(5), 1911-1918. doi:10.13031/2013.20000

[-]

This item appears in the following Collection(s)

Show full item record