- -

Relationships among slurry characteristics and gaseous emissions at different types of commercial Spanish pig farms

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Relationships among slurry characteristics and gaseous emissions at different types of commercial Spanish pig farms

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Beccaccia, Amanda es_ES
dc.contributor.author Ferrer Riera, Pablo es_ES
dc.contributor.author Ibáñez, Miguel Ángel es_ES
dc.contributor.author Estellés, F. es_ES
dc.contributor.author Rodríguez, Carlos es_ES
dc.contributor.author Moset, Verónica es_ES
dc.contributor.author Blas, Carlos de es_ES
dc.contributor.author Calvet Sanz, Salvador es_ES
dc.contributor.author García Rebollar, Paloma es_ES
dc.date.accessioned 2016-06-02T10:38:38Z
dc.date.available 2016-06-02T10:38:38Z
dc.date.issued 2015-03
dc.identifier.issn 1695-971X
dc.identifier.uri http://hdl.handle.net/10251/65110
dc.description.abstract [EN] This study aimed to analyse several factors of variation of slurry composition and to establish prediction equations for potential methane (CH4) and ammonia (NH3) emissions. Seventy-nine feed and slurry samples were collected at two seasons (summer and winter) from commercial pig farms sited at two Spanish regions (Centre and Mediterranean). Nursery, growing-fattening, gestating and lactating facilities were sampled. Feed and slurry composition were determined, and potential CH4 and NH3 emissions measured at laboratory. Feed nutrient contents were used as covariates in the analysis. Near infrared reflectance spectroscopy (NIRS) was evaluated as a predicting tool for slurry composition and potential gaseous emissions. A wide variability was found both in feed and slurry composition. Mediterranean farms had a higher pH (p<0.001) and ash (p=0.02) concentration than those located at the Centre of Spain. Also, type of farm affected ether extract content of the slurry (p=0.02), with highest values obtained for the youngest animal facilities. Results suggested a buffer effect of dietary fibre on slurry pH and a direct relationship (p<0.05) with fibre constituents of manure. Dietary protein content did not affect slurry nitrogen content but decreased (p=0.003) total and volatile solids concentration. Prediction models of potential NH3 emissions (R2=0.89) and CH4 yield (R2=0.61) were obtained from slurry composition. Predictions from NIRS showed a high accuracy for most slurry constituents (R2 above 0.90) and similar accuracy of prediction of potential NH3 and CH4 emissions (R2=0.84 and 0.68, respectively) to models using slurry characteristics, which can be of interest to estimate emissions from commercial farms and establish mitigation strategies or optimize biogas production. es_ES
dc.description.sponsorship This research was supported by the Spanish Ministerio de Ciencia e Innovacion (project AGL2011-30023) and the Valencian Government (Project ACOMP/2013/118). en_EN
dc.language Inglés es_ES
dc.publisher Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) es_ES
dc.relation.ispartof Spanish Journal of Agricultural Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Ammonia es_ES
dc.subject methane es_ES
dc.subject NIRS es_ES
dc.subject animal nutrition es_ES
dc.subject prediction model es_ES
dc.subject.classification ORGANIZACION DE EMPRESAS es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title Relationships among slurry characteristics and gaseous emissions at different types of commercial Spanish pig farms es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.5424/sjar/2015131-6575
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AGL2011-30023-C03-01/ES/EMISIONES DE NH3 Y GASES EFECTO INVERNADERO EN PURIN PORCINO Y POTENCIAL PARA PRODUCCION DE BIOGAS O VALOR FERTILIZANTE: VARIABILIDAD INDUCIDA POR ESTRATEGIAS DE ALIMENTACION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACOMP%2F2013%2F118/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AGL2011-30023-C03-03/ES/EMISIONES DE AMONIACO Y GASES EFECTO INVERNADERO DE PURIN PORCINO Y POTENCIAL PARA PRODUCIR BIOGAS O COMO FERTILIZANTE: VARIABILIDAD INDUCIDA POR ESTRATEGIAS DE ALIMENTACION/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Ciencia y Tecnología Animal - Institut de Ciència i Tecnologia Animal es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.description.bibliographicCitation Beccaccia, A.; Ferrer Riera, P.; Ibáñez, MÁ.; Estellés, F.; Rodríguez, C.; Moset, V.; Blas, CD.... (2015). Relationships among slurry characteristics and gaseous emissions at different types of commercial Spanish pig farms. Spanish Journal of Agricultural Research. 13(1):1-15. https://doi.org/10.5424/sjar/2015131-6575 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.5424/sjar/2015131-6575 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 286461 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Aarnink, A. J. A., & Verstegen, M. W. A. (2007). Nutrition, key factor to reduce environmental load from pig production. Livestock Science, 109(1-3), 194-203. doi:10.1016/j.livsci.2007.01.112 es_ES
dc.description.references Alvarez-Rodriguez, J., Hermida, B., Parera, J., Morazán, H., Balcells, J., & Babot, D. (2013). The influence of drinker device on water use and fertiliser value of slurry from growing-finishing pigs. Animal Production Science, 53(4), 328. doi:10.1071/an12136 es_ES
dc.description.references Angelidaki, I., & Sanders, W. (2004). Assessment of the anaerobic biodegradability of macropollutants. Reviews in Environmental Science and Bio/Technology, 3(2), 117-129. doi:10.1007/s11157-004-2502-3 es_ES
dc.description.references AOAC, 2000. Official methods of analysis, 15th ed. (Harwitte W, Ed.). Association of Official Analytical Chemists. Washington, USA. es_ES
dc.description.references APHA, 2005. Standard methods for the examination of water and wastewater. Centennial Edition, Baltimore, MD, USA. es_ES
dc.description.references Barnes, R. J., Dhanoa, M. S., & Lister, S. J. (1989). Standard Normal Variate Transformation and De-Trending of Near-Infrared Diffuse Reflectance Spectra. Applied Spectroscopy, 43(5), 772-777. doi:10.1366/0003702894202201 es_ES
dc.description.references Bietresato, M., & Sartori, L. (2013). Technical aspects concerning the detection of animal waste nutrient content via its electrical characteristics. Bioresource Technology, 132, 127-136. doi:10.1016/j.biortech.2012.12.184 es_ES
dc.description.references Bindelle, J., Buldgen, A., Delacollette, M., Wavreille, J., Agneessens, R., Destain, J. P., & Leterme, P. (2009). Influence of source and concentrations of dietary fiber on in vivo nitrogen excretion pathways in pigs as reflected by in vitro fermentation and nitrogen incorporation by fecal bacteria123. Journal of Animal Science, 87(2), 583-593. doi:10.2527/jas.2007-0717 es_ES
dc.description.references Box GEP, Cox DR, 1964. An analysis of transformations. J R Stat Soc B 26: 211-246. es_ES
dc.description.references Canh TT, Verstegen MWA, Aarnink AJA, Schrama JW, 1997. Influence of dietary factors on nitrogen partitioning and composition of urine and faeces of fattening pigs. J Anim Sci 75: 700-706. es_ES
dc.description.references Canh, T. ., Aarnink, A. J. ., Schutte, J. ., Sutton, A., Langhout, D. ., & Verstegen, M. W. . (1998). Dietary protein affects nitrogen excretion and ammonia emission from slurry of growing–finishing pigs. Livestock Production Science, 56(3), 181-191. doi:10.1016/s0301-6226(98)00156-0 es_ES
dc.description.references Chen, L., Xing, L., Han, L., & Yang, Z. (2009). Evaluation of physicochemical models for rapidly estimating pig manure nutrient content. Biosystems Engineering, 103(3), 313-320. doi:10.1016/j.biosystemseng.2009.04.007 es_ES
dc.description.references Conn, K. L., Topp, E., & Lazarovits, G. (2007). Factors Influencing the Concentration of Volatile Fatty Acids, Ammonia, and Other Nutrients in Stored Liquid Pig Manure. Journal of Environment Quality, 36(2), 440. doi:10.2134/jeq2006.0222 es_ES
dc.description.references Dinuccio, E., Berg, W., & Balsari, P. (2008). Gaseous emissions from the storage of untreated slurries and the fractions obtained after mechanical separation. Atmospheric Environment, 42(10), 2448-2459. doi:10.1016/j.atmosenv.2007.12.022 es_ES
dc.description.references Doublet, J., Boulanger, A., Ponthieux, A., Laroche, C., Poitrenaud, M., & Cacho Rivero, J. A. (2013). Predicting the biochemical methane potential of wide range of organic substrates by near infrared spectroscopy. Bioresource Technology, 128, 252-258. doi:10.1016/j.biortech.2012.10.044 es_ES
dc.description.references FEDNA, 2010. Tablas FEDNA de composición y valor nutritivo de alimentos para la fabricación de piensos compuestos, 3rd ed. (de Blas C, Mateos GG, García-Rebollar P, Eds). Fundación Espa-ola para el Desarrollo de la Nutrición Animal, Madrid, Spain, 502 pp. es_ES
dc.description.references Galassi, G., Colombini, S., Malagutti, L., Crovetto, G. M., & Rapetti, L. (2010). Effects of high fibre and low protein diets on performance, digestibility, nitrogen excretion and ammonia emission in the heavy pig. Animal Feed Science and Technology, 161(3-4), 140-148. doi:10.1016/j.anifeedsci.2010.08.009 es_ES
dc.description.references Halas, D., Hansen, C. F., Hampson, D. J., Kim, J.-C., Mullan, B. P., Wilson, R. H., & Pluske, J. R. (2010). Effects of benzoic acid and inulin on ammonia–nitrogen excretion, plasma urea levels, and the pH in faeces and urine of weaner pigs. Livestock Science, 134(1-3), 243-245. doi:10.1016/j.livsci.2010.06.153 es_ES
dc.description.references Hayes, E. ., Leek, A. B. ., Curran, T. ., Dodd, V. ., Carton, O. ., Beattie, V. ., & O’Doherty, J. . (2004). The influence of diet crude protein level on odour and ammonia emissions from finishing pig houses. Bioresource Technology, 91(3), 309-315. doi:10.1016/s0960-8524(03)00184-6 es_ES
dc.description.references Hernández, F., Martínez, S., López, C., Megías, M. D., López, M., & Madrid, J. (2011). Effect of dietary crude protein levels in a commercial range, on the nitrogen balance, ammonia emission and pollutant characteristics of slurry in fattening pigs. Animal, 5(8), 1290-1298. doi:10.1017/s1751731111000115 es_ES
dc.description.references Huang, G., Han, L., & Liu, X. (2007). Rapid Estimation of the Composition of Animal Manure Compost by near Infrared Reflectance Spectroscopy. Journal of Near Infrared Spectroscopy, 15(6), 387-394. doi:10.1255/jnirs.745 es_ES
dc.description.references Jarret, G., Cerisuelo, A., Peu, P., Martinez, J., & Dourmad, J.-Y. (2012). Impact of pig diets with different fibre contents on the composition of excreta and their gaseous emissions and anaerobic digestion. Agriculture, Ecosystems & Environment, 160, 51-58. doi:10.1016/j.agee.2011.05.029 es_ES
dc.description.references Jørgensen, H. (2007). Methane emission by growing pigs and adult sows as influenced by fermentation. Livestock Science, 109(1-3), 216-219. doi:10.1016/j.livsci.2007.01.142 es_ES
dc.description.references Jouany JP, 1982. Volatile fatty acid and alcohol determination in digestive contents, silage juices, bacterial cultures and anaerobic fermentor contents. Sci Alimen 2: 131-144. es_ES
dc.description.references Kerr BJ, Ziemer SL, Trabue SL, Crouse JD, Parkin TB, 2006. Manure composition of swine as affected by dietary protein and cellulose concentrations. J Anim Sci 84: 1584-1592. es_ES
dc.description.references Kreuzer, M., Wittmann, M., Gerdemann, M. M., Hanneken, H., Abel, H., & Machmuller, A. (1999). Re-examination of the metabolizable energy contents of various rations containing different types and levels of bacterially fermentable substrates in digestibility experiments with growing pigs. Journal of Animal Physiology and Animal Nutrition, 82(1), 33-49. doi:10.1046/j.1439-0396.1999.00218.x es_ES
dc.description.references Licitra, G., Hernandez, T. M., & Van Soest, P. J. (1996). Standardization of procedures for nitrogen fractionation of ruminant feeds. Animal Feed Science and Technology, 57(4), 347-358. doi:10.1016/0377-8401(95)00837-3 es_ES
dc.description.references Liu, Z., Powers, W., & Liu, H. (2013). Greenhouse gas emissions from swine operations: Evaluation of the Intergovernmental Panel on Climate Change approaches through meta-analysis1. Journal of Animal Science, 91(8), 4017-4032. doi:10.2527/jas.2012-6147 es_ES
dc.description.references Malley, D. F., Yesmin, L., & Eilers, R. G. (2002). Rapid Analysis of Hog Manure and Manure-amended Soils Using Near-infrared Spectroscopy. Soil Science Society of America Journal, 66(5), 1677. doi:10.2136/sssaj2002.1677 es_ES
dc.description.references Martinez-Suller L, Provolo G, Carton OT, Brennan D, Kirwan L, Richards KG, 2010. The composition of dirty water on dairy farms in Ireland. Irish J Agr Food Res 49: 67-80. es_ES
dc.description.references Mertens DR, 2002. Gravimetric determination of amylase-treated neutral detergent fibre in feeds with refluxing beakers or crucibles: collaborative study. J AOAC Int 85: 1217-1240. es_ES
dc.description.references Møller, H. B., Sommer, S. G., & Ahring, B. K. (2004). Methane productivity of manure, straw and solid fractions of manure. Biomass and Bioenergy, 26(5), 485-495. doi:10.1016/j.biombioe.2003.08.008 es_ES
dc.description.references Møller, H. B., Sommer, S. G., & Ahring, B. K. (2004). Biological Degradation and Greenhouse Gas Emissions during Pre-Storage of Liquid Animal Manure. Journal of Environment Quality, 33(1), 27. doi:10.2134/jeq2004.2700 es_ES
dc.description.references Montalvo, G., Morales, J., Pineiro, C., Godbout, S., & Bigeriego, M. (2013). Effect of different dietary strategies on gas emissions and growth performance in post- weaned piglets. Spanish Journal of Agricultural Research, 11(4), 1016. doi:10.5424/sjar/2013114-3185 es_ES
dc.description.references Moral, R., Perez-Murcia, M. D., Perez-Espinosa, A., Moreno-Caselles, J., Paredes, C., & Rufete, B. (2008). Salinity, organic content, micronutrients and heavy metals in pig slurries from South-eastern Spain. Waste Management, 28(2), 367-371. doi:10.1016/j.wasman.2007.01.009 es_ES
dc.description.references Pereira, J., Misselbrook, T. H., Chadwick, D. R., Coutinho, J., & Trindade, H. (2012). Effects of temperature and dairy cattle excreta characteristics on potential ammonia and greenhouse gas emissions from housing: A laboratory study. Biosystems Engineering, 112(2), 138-150. doi:10.1016/j.biosystemseng.2012.03.011 es_ES
dc.description.references Portejoie, S., Dourmad, J. Y., Martinez, J., & Lebreton, Y. (2004). Effect of lowering dietary crude protein on nitrogen excretion, manure composition and ammonia emission from fattening pigs. Livestock Production Science, 91(1-2), 45-55. doi:10.1016/j.livprodsci.2004.06.013 es_ES
dc.description.references Reeves, J. B. (2007). The present status of «quick tests» for on-farm analysis with emphasis on manures and soil: What is available and what is lacking? Livestock Science, 112(3), 224-231. doi:10.1016/j.livsci.2007.09.009 es_ES
dc.description.references Saeys, W., Mouazen, A. M., & Ramon, H. (2005). Potential for Onsite and Online Analysis of Pig Manure using Visible and Near Infrared Reflectance Spectroscopy. Biosystems Engineering, 91(4), 393-402. doi:10.1016/j.biosystemseng.2005.05.001 es_ES
dc.description.references Sánchez, M., & González, J. L. (2005). The fertilizer value of pig slurry. I. Values depending on the type of operation. Bioresource Technology, 96(10), 1117-1123. doi:10.1016/j.biortech.2004.10.002 es_ES
dc.description.references Shenk JS, Westerhaus MO, 1996. Calibration of ISI way. In: Near infrared spectroscopy: the future waves (Davies AMC, Williams P, eds). NIR Publ., Chichester, West Sussex, UK, pp: 198-202. es_ES
dc.description.references Snoek, D. J. W., Stigter, J. D., Ogink, N. W. M., & Groot Koerkamp, P. W. G. (2014). Sensitivity analysis of mechanistic models for estimating ammonia emission from dairy cow urine puddles. Biosystems Engineering, 121, 12-24. doi:10.1016/j.biosystemseng.2014.02.003 es_ES
dc.description.references Soares, M., & Lopez-Bote, C. . (2002). Effects of dietary lecithin and fat unsaturation on nutrient utilisation in weaned piglets. Animal Feed Science and Technology, 95(3-4), 169-177. doi:10.1016/s0377-8401(01)00324-8 es_ES
dc.description.references Sørensen, L. K., Sørensen, P., & Birkmose, T. S. (2007). Application of Reflectance Near Infrared Spectroscopy for Animal Slurry Analyses. Soil Science Society of America Journal, 71(4), 1398. doi:10.2136/sssaj2006.330 es_ES
dc.description.references Tamminga, S. (2003). Pollution due to nutrient losses and its control in European animal production. Livestock Production Science, 84(2), 101-111. doi:10.1016/j.livprodsci.2003.09.008 es_ES
dc.description.references Triolo, J. M., Sommer, S. G., Møller, H. B., Weisbjerg, M. R., & Jiang, X. Y. (2011). A new algorithm to characterize biodegradability of biomass during anaerobic digestion: Influence of lignin concentration on methane production potential. Bioresource Technology, 102(20), 9395-9402. doi:10.1016/j.biortech.2011.07.026 es_ES
dc.description.references Triolo, J. M., Ward, A. J., Pedersen, L., Løkke, M. M., Qu, H., & Sommer, S. G. (2014). Near Infrared Reflectance Spectroscopy (NIRS) for rapid determination of biochemical methane potential of plant biomass. Applied Energy, 116, 52-57. doi:10.1016/j.apenergy.2013.11.006 es_ES
dc.description.references Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science, 74(10), 3583-3597. doi:10.3168/jds.s0022-0302(91)78551-2 es_ES
dc.description.references Van Soest PJ, 1994. Nutritional ecology of the ruminant, 2nd edition. Cornell Univ Press, USA, 476 pp. es_ES
dc.description.references Vedrenne, F., Béline, F., Dabert, P., & Bernet, N. (2008). The effect of incubation conditions on the laboratory measurement of the methane producing capacity of livestock wastes. Bioresource Technology, 99(1), 146-155. doi:10.1016/j.biortech.2006.11.043 es_ES
dc.description.references Von Heimendahl, E., Breves, G., & Abel, H. (2010). Fiber-related digestive processes in three different breeds of pigs12. Journal of Animal Science, 88(3), 972-981. doi:10.2527/jas.2009-2370 es_ES
dc.description.references Williams PC, Sobering D, 1996. How do we do it: a brief summary of the methods we use in developing near infrared calibrations. In: Near infrared spectroscopy: the future waves (Davies AMC, Williams P, eds). NIR Publ., Chichester, West Sussex, UK, pp: 185-188. es_ES
dc.description.references Williams PC, 2001. Implementation of near-infrared technology. In: Near-infrared technology in the agricultural and food industries, 2nd ed (Williams PC, Norris K, Eds.). Am Assoc Cereal Chemists Inc., St. Paul, MN, USA, pp: 145-169. es_ES
dc.description.references Yagüe, M. R., Bosch-Serra, À. D., & Boixadera, J. (2012). Measurement and estimation of the fertiliser value of pig slurry by physicochemical models: Usefulness and constraints. Biosystems Engineering, 111(2), 206-216. doi:10.1016/j.biosystemseng.2011.11.013 es_ES
dc.description.references W. Ye, J. C. Lorimor, C. Hurburgh, H. Zhang, & J. Hattey. (2005). APPLICATION OF NEAR-INFRARED REFLECTANCE SPECTROSCOPY FOR DETERMINATION OF NUTRIENT CONTENTS IN LIQUID AND SOLID MANURES. Transactions of the ASAE, 48(5), 1911-1918. doi:10.13031/2013.20000 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem