- -

Synthesis of high quality alkyl naphthenic kerosene by reacting an oil refinery with a biomass refinery stream

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Synthesis of high quality alkyl naphthenic kerosene by reacting an oil refinery with a biomass refinery stream

Show full item record

Arias Carrascal, KS.; Climent Olmedo, MJ.; Corma Canós, A.; Iborra Chornet, S. (2015). Synthesis of high quality alkyl naphthenic kerosene by reacting an oil refinery with a biomass refinery stream. Energy and Environmental Science. 8(1):317-331. https://doi.org/10.1039/c4ee03194f

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/65116

Files in this item

Item Metadata

Title: Synthesis of high quality alkyl naphthenic kerosene by reacting an oil refinery with a biomass refinery stream
Author: Arias Carrascal, Karen Sulay Climent Olmedo, María José Corma Canós, Avelino Iborra Chornet, Sara
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Issued date:
Abstract:
Alkylation of aromatics with HMF is a new route for the synthesis of biofuels. Alkylation of toluene with HMF has been studied in the presence of large pore (HBeta, USY and Mordenite), delaminated zeolites as well as on ...[+]
Subjects: HIERARCHICAL ZEOLITE CATALYSTS , FRIEDEL-CRAFTS ALKYLATION , TRANSPORTATION FUELS , PLATFORM MOLECULES , AROMATIC-COMPOUNDS , D-FRUCTOSE , DIESEL , ACID , CONVERSION , MECHANISM
Copyrigths: Reserva de todos los derechos
Source:
Energy and Environmental Science. (issn: 1754-5692 ) (eissn: 1754-5706 )
DOI: 10.1039/c4ee03194f
Publisher:
Royal Society of Chemistry
Publisher version: http://dx.doi.org/10.1039/c4ee03194f
Project ID:
info:eu-repo/grantAgreement/MICINN//CSD2009-00050/ES/Desarrollo de catalizadores más eficientes para el diseño de procesos químicos sostenibles y produccion limpia de energia/ /
info:eu-repo/grantAgreement/MICINN//CTQ2011-27550/ES/TRANSFORMACION CATALITICA DE BIOMASA EN DIESEL Y EN PRODUCTOS QUIMICOS/
Program Severo Ochoa
Thanks:
Financial support by Consolider-Ingenio 2010 (project MULTICAT), Spanish MICINN Project CTQ-2011-27550), Generalitat Valenciana (Prometeo program) and Program Severo Ochoa are gratefully acknowledged. This work was supported ...[+]
Type: Artículo

References

Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of Transportation Fuels from Biomass:  Chemistry, Catalysts, and Engineering. Chemical Reviews, 106(9), 4044-4098. doi:10.1021/cr068360d

Climent, M. J., Corma, A., & Iborra, S. (2014). Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chemistry, 16(2), 516. doi:10.1039/c3gc41492b

Cheng, Y.-T., Jae, J., Shi, J., Fan, W., & Huber, G. W. (2011). Production of Renewable Aromatic Compounds by Catalytic Fast Pyrolysis of Lignocellulosic Biomass with Bifunctional Ga/ZSM-5 Catalysts. Angewandte Chemie International Edition, 51(6), 1387-1390. doi:10.1002/anie.201107390 [+]
Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of Transportation Fuels from Biomass:  Chemistry, Catalysts, and Engineering. Chemical Reviews, 106(9), 4044-4098. doi:10.1021/cr068360d

Climent, M. J., Corma, A., & Iborra, S. (2014). Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chemistry, 16(2), 516. doi:10.1039/c3gc41492b

Cheng, Y.-T., Jae, J., Shi, J., Fan, W., & Huber, G. W. (2011). Production of Renewable Aromatic Compounds by Catalytic Fast Pyrolysis of Lignocellulosic Biomass with Bifunctional Ga/ZSM-5 Catalysts. Angewandte Chemie International Edition, 51(6), 1387-1390. doi:10.1002/anie.201107390

Gullón, P., Romaní, A., Vila, C., Garrote, G., & Parajó, J. C. (2011). Potential of hydrothermal treatments in lignocellulose biorefineries. Biofuels, Bioproducts and Biorefining, 6(2), 219-232. doi:10.1002/bbb.339

Domínguez de María, P. (2013). Recent trends in (ligno)cellulose dissolution using neoteric solvents: switchable, distillable and bio-based ionic liquids. Journal of Chemical Technology & Biotechnology, 89(1), 11-18. doi:10.1002/jctb.4201

T. Werpy and G. R.Petersen, Top Value Added Chemicals from Biomass. Volume I. Results of Screening for Potential Candidates from Sugars and Synthesis Gas, U.S.D. Energy, 2004

Bozell, J. J., & Petersen, G. R. (2010). Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s «Top 10» revisited. Green Chemistry, 12(4), 539. doi:10.1039/b922014c

Climent, M. J., Corma, A., & Iborra, S. (2011). Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts. Green Chemistry, 13(3), 520. doi:10.1039/c0gc00639d

Rosatella, A. A., Simeonov, S. P., Frade, R. F. M., & Afonso, C. A. M. (2011). 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chemistry, 13(4), 754. doi:10.1039/c0gc00401d

Tong, X., Ma, Y., & Li, Y. (2010). Biomass into chemicals: Conversion of sugars to furan derivatives by catalytic processes. Applied Catalysis A: General, 385(1-2), 1-13. doi:10.1016/j.apcata.2010.06.049

Van Putten, R.-J., van der Waal, J. C., de Jong, E., Rasrendra, C. B., Heeres, H. J., & de Vries, J. G. (2013). Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources. Chemical Reviews, 113(3), 1499-1597. doi:10.1021/cr300182k

Teong, S. P., Yi, G., & Zhang, Y. (2014). Hydroxymethylfurfural production from bioresources: past, present and future. Green Chemistry, 16(4), 2015. doi:10.1039/c3gc42018c

Nakamura, Y., & Morikawa, S. (1980). The Dehydration of D-Fructose to 5-Hydroxymethyl-2-furaldehyde. Bulletin of the Chemical Society of Japan, 53(12), 3705-3706. doi:10.1246/bcsj.53.3705

Roman-Leshkov, Y. (2006). Phase Modifiers Promote Efficient Production of Hydroxymethylfurfural from Fructose. Science, 312(5782), 1933-1937. doi:10.1126/science.1126337

Saha, B., & Abu-Omar, M. M. (2014). Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents. Green Chem., 16(1), 24-38. doi:10.1039/c3gc41324a

S. Frenzel , S.Peters, T.Rose and M.Kunz, Industrial Sucrose, in Sustainable Solutions for Modern Economies, ed. R. Höfer, RSC Green Chemistry, No 4, RSC Publ., Cambridge, 2009, pp. 264–299

Biochem AVA (2014) First Industrial Production for Renewable 5-HMF, http://www.ava-biochem.com/media/downloads-EN/press-releases/First-Industrial-Production-For-Renewable-5-HMF.pdf, accessed April 16, 2014

Chheda, J. N., Huber, G. W., & Dumesic, J. A. (2007). Liquid-Phase Catalytic Processing of Biomass-Derived Oxygenated Hydrocarbons to Fuels and Chemicals. Angewandte Chemie International Edition, 46(38), 7164-7183. doi:10.1002/anie.200604274

Bond, J. Q., Alonso, D. M., Wang, D., West, R. M., & Dumesic, J. A. (2010). Integrated Catalytic Conversion of  -Valerolactone to Liquid Alkenes for Transportation Fuels. Science, 327(5969), 1110-1114. doi:10.1126/science.1184362

Corma, A., Renz, M., & Schaverien, C. (2008). Coupling Fatty Acids by Ketonic Decarboxylation Using Solid Catalysts for the Direct Production of Diesel, Lubricants, and Chemicals. ChemSusChem, 1(8-9), 739-741. doi:10.1002/cssc.200800103

Serrano-Ruiz, J. C., Braden, D. J., West, R. M., & Dumesic, J. A. (2010). Conversion of cellulose to hydrocarbon fuels by progressive removal of oxygen. Applied Catalysis B: Environmental, 100(1-2), 184-189. doi:10.1016/j.apcatb.2010.07.029

Pulido, A., Oliver-Tomas, B., Renz, M., Boronat, M., & Corma, A. (2012). Ketonic Decarboxylation Reaction Mechanism: A Combined Experimental and DFT Study. ChemSusChem, 6(1), 141-151. doi:10.1002/cssc.201200419

Kunkes, E. L., Simonetti, D. A., West, R. M., Serrano-Ruiz, J. C., Gartner, C. A., & Dumesic, J. A. (2008). Catalytic Conversion of Biomass to Monofunctional Hydrocarbons and Targeted Liquid-Fuel Classes. Science, 322(5900), 417-421. doi:10.1126/science.1159210

Corma, A., de la Torre, O., Renz, M., & Villandier, N. (2011). Production of High-Quality Diesel from Biomass Waste Products. Angewandte Chemie International Edition, 50(10), 2375-2378. doi:10.1002/anie.201007508

Corma, A., de la Torre, O., & Renz, M. (2011). High-Quality Diesel from Hexose- and Pentose-Derived Biomass Platform Molecules. ChemSusChem, 4(11), 1574-1577. doi:10.1002/cssc.201100296

Corma, A., de la Torre, O., & Renz, M. (2012). Production of high quality diesel from cellulose and hemicellulose by the Sylvan process: catalysts and process variables. Energy & Environmental Science, 5(4), 6328. doi:10.1039/c2ee02778j

Huber, G. W. (2005). Production of Liquid Alkanes by Aqueous-Phase Processing of Biomass-Derived Carbohydrates. Science, 308(5727), 1446-1450. doi:10.1126/science.1111166

Barrett, C. J., Chheda, J. N., Huber, G. W., & Dumesic, J. A. (2006). Single-reactor process for sequential aldol-condensation and hydrogenation of biomass-derived compounds in water. Applied Catalysis B: Environmental, 66(1-2), 111-118. doi:10.1016/j.apcatb.2006.03.001

Iovel, I., Mertins, K., Kischel, J., Zapf, A., & Beller, M. (2005). An Efficient and General Iron-Catalyzed Arylation of Benzyl Alcohols and Benzyl Carboxylates. Angewandte Chemie International Edition, 44(25), 3913-3917. doi:10.1002/anie.200462522

Zhou, X., & Rauchfuss, T. B. (2012). Production of Hybrid Diesel Fuel Precursors from Carbohydrates and Petrochemicals Using Formic Acid as a Reactive Solvent. ChemSusChem, 6(2), 383-388. doi:10.1002/cssc.201200718

Onorato, A., Pavlik, C., Invernale, M. A., Berghorn, I. D., Sotzing, G. A., Morton, M. D., & Smith, M. B. (2011). Polymer-mediated cyclodehydration of alditols and ketohexoses. Carbohydrate Research, 346(13), 1662-1670. doi:10.1016/j.carres.2011.04.017

Bidart, A. M. F., Borges, A. P. S., Nogueira, L., Lachter, E. R., & Mota, C. J. A. (2001). Catalysis Letters, 75(3/4), 155-157. doi:10.1023/a:1016748206714

Okumura, K., Nishigaki, K., & Niwa, M. (2001). Prominent catalytic activity of Ga-containing MCM-41 in the Friedel–Crafts alkylation. Microporous and Mesoporous Materials, 44-45, 509-516. doi:10.1016/s1387-1811(01)00228-1

KALITA, P., GUPTA, N., & KUMAR, R. (2007). Synergistic role of acid sites in the Ce-enhanced activity of mesoporous Ce–Al-MCM-41 catalysts in alkylation reactions: FTIR and TPD-ammonia studies. Journal of Catalysis, 245(2), 338-347. doi:10.1016/j.jcat.2006.10.022

Sun, Y., & Prins, R. (2008). Friedel-Crafts alkylations over hierarchical zeolite catalysts. Applied Catalysis A: General, 336(1-2), 11-16. doi:10.1016/j.apcata.2007.08.015

Climent, M. J., Corma, A., García, H., & Primo, J. (1989). Zeolites in organic reactions. Applied Catalysis, 51(1), 113-125. doi:10.1016/s0166-9834(00)80199-2

S. Al-Khattaf , M. A.Ali and J.Cejka, Recent Development in Transformation of Aromatic Hydrocarbons over Zeolites, in Zeolites and Catalysis, ed. J. Cejka, A. Corma and S. Zones, Wiley-VCH, Weinheim, 2010, vol. 2, pp. 623–648

Verboekend, D., & Pérez-Ramírez, J. (2011). Design of hierarchical zeolite catalysts by desilication. Catalysis Science & Technology, 1(6), 879. doi:10.1039/c1cy00150g

Gounder, R., & Iglesia, E. (2013). The catalytic diversity of zeolites: confinement and solvation effects within voids of molecular dimensions. Chemical Communications, 49(34), 3491. doi:10.1039/c3cc40731d

Yamato, T., Hideshima, C., Prakash, G. K. S., & Olah, G. A. (1991). Solid superacid-catalyzed organic synthesis. 4. Perfluorinated resinsulfonic acid (Nafion-H) catalyzed Friedel-Crafts benzylation of benzene and substituted benzenes. The Journal of Organic Chemistry, 56(6), 2089-2091. doi:10.1021/jo00006a023

Corma, A., Zicovich-Wilson, C., & Viruela, P. (1994). Orbital-controlled reactions catalysed by zeolites: Electrophilic alkylation of aromatics. Journal of Physical Organic Chemistry, 7(7), 364-370. doi:10.1002/poc.610070706

VANDERBEKEN, S., DEJAEGERE, E., TEHRANI, K., PAUL, J., JACOBS, P., BARON, G., & DENAYER, J. (2005). Alkylation of deactivated aromatic compounds on zeolites. Adsorption, deactivation and selectivity effects in the alkylation of bromobenzene and toluene with bifunctional alkylating agents. Journal of Catalysis, 235(1), 128-138. doi:10.1016/j.jcat.2005.06.029

PINE, L. (1984). Prediction of cracking catalyst behavior by a zeolite unit cell size model. Journal of Catalysis, 85(2), 466-476. doi:10.1016/0021-9517(84)90235-5

Verboekend, D., Vilé, G., & Pérez-Ramírez, J. (2011). Hierarchical Y and USY Zeolites Designed by Post-Synthetic Strategies. Advanced Functional Materials, 22(5), 916-928. doi:10.1002/adfm.201102411

Klinowski, J., Thomas, J. M., Fyfe, C. A., & Gobbi, G. C. (1982). Monitoring of structural changes accompanying ultrastabilization of faujasitic zeolite catalysts. Nature, 296(5857), 533-536. doi:10.1038/296533a0

Leonowicz, M. E., Lawton, J. A., Lawton, S. L., & Rubin, M. K. (1994). MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems. Science, 264(5167), 1910-1913. doi:10.1126/science.264.5167.1910

Corma, A., Martı́nez-Soria, V., & Schnoeveld, E. (2000). Alkylation of Benzene with Short-Chain Olefins over MCM-22 Zeolite: Catalytic Behaviour and Kinetic Mechanism. Journal of Catalysis, 192(1), 163-173. doi:10.1006/jcat.2000.2849

Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592

Zanardi, S., Alberti, A., Cruciani, G., Corma, A., Fornés, V., & Brunelli, M. (2004). Crystal Structure Determination of Zeolite Nu-6(2) and Its Layered Precursor Nu-6(1). Angewandte Chemie International Edition, 43(37), 4933-4937. doi:10.1002/anie.200460085

Corma, A., Díaz, U., García, T., Sastre, G., & Velty, A. (2010). Multifunctional Hybrid Organic−Inorganic Catalytic Materials with a Hierarchical System of Well-Defined Micro- and Mesopores. Journal of the American Chemical Society, 132(42), 15011-15021. doi:10.1021/ja106272z

Díaz, U., Fornés, V., & Corma, A. (2006). On the mechanism of zeolite growing: Crystallization by seeding with delayered zeolites. Microporous and Mesoporous Materials, 90(1-3), 73-80. doi:10.1016/j.micromeso.2005.09.025

Aguilar, J., Pergher, S. B. C., Detoni, C., Corma, A., Melo, F. V., & Sastre, E. (2008). Alkylation of biphenyl with propylene using MCM-22 and ITQ-2 zeolites. Catalysis Today, 133-135, 667-672. doi:10.1016/j.cattod.2007.11.057

Lugo, H. J., Ragone, G., & Zambrano, J. (1999). Correlations between Octane Numbers and Catalytic Cracking Naphtha Composition. Industrial & Engineering Chemistry Research, 38(5), 2171-2176. doi:10.1021/ie980273r

Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0

Emeis, C. A. (1993). Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts. Journal of Catalysis, 141(2), 347-354. doi:10.1006/jcat.1993.1145

D. W. Breck and E.Flanigen, Molecular Sieves, Society of Chemical Industry, 1968, p. 47

Fichtner-Schmittler, H., Lohse, U., Engelhardt, G., & Patzelová, V. (1984). Unit cell constants of zeolites stabilized by dealumination determination of Al content from lattice parameters. Crystal Research and Technology, 19(1), K1-K3. doi:10.1002/crat.2170190124

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record