Mostrar el registro sencillo del ítem
dc.contributor.author | Arias Carrascal, Karen Sulay | es_ES |
dc.contributor.author | Climent Olmedo, María José | es_ES |
dc.contributor.author | Corma Canós, Avelino | es_ES |
dc.contributor.author | Iborra Chornet, Sara | es_ES |
dc.date.accessioned | 2016-06-02T11:37:18Z | |
dc.date.available | 2016-06-02T11:37:18Z | |
dc.date.issued | 2015 | |
dc.identifier.issn | 1754-5692 | |
dc.identifier.uri | http://hdl.handle.net/10251/65116 | |
dc.description.abstract | Alkylation of aromatics with HMF is a new route for the synthesis of biofuels. Alkylation of toluene with HMF has been studied in the presence of large pore (HBeta, USY and Mordenite), delaminated zeolites as well as on mesoporous aluminosilicates. In all cases a mixture of monoalkylated products of 5-(o-, m- and p-methyl)benzylfuran-2-carbaldehyde and OBMF coming from self etherification of HMF were obtained. Large pore 3D (USY) and especially 2D (ITQ-2) zeolites are active and selective catalysts for this transformation. The alkylation reaction was extended successfully to other substituted benzenes as well as to a heavy reformate mixture as source aromatic compounds, achieving 91% yield of alkylated products with 93% selectivity. Further hydrodeoxygenation of alkylated compounds in a fixed bed continuous reactor was performed using Pt/C and Pt/TiO2 as catalysts allowing to obtain a hydrocarbon mixture containing alkylcyclohexane compounds that can be used as high quality kerosene. | es_ES |
dc.description.sponsorship | Financial support by Consolider-Ingenio 2010 (project MULTICAT), Spanish MICINN Project CTQ-2011-27550), Generalitat Valenciana (Prometeo program) and Program Severo Ochoa are gratefully acknowledged. This work was supported by Consolider. KSA is grateful to ITQ for a doctoral grant. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Royal Society of Chemistry | es_ES |
dc.relation | Program Severo Ochoa | es_ES |
dc.relation.ispartof | Energy and Environmental Science | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | HIERARCHICAL ZEOLITE CATALYSTS | es_ES |
dc.subject | FRIEDEL-CRAFTS ALKYLATION | es_ES |
dc.subject | TRANSPORTATION FUELS | es_ES |
dc.subject | PLATFORM MOLECULES | es_ES |
dc.subject | AROMATIC-COMPOUNDS | es_ES |
dc.subject | D-FRUCTOSE | es_ES |
dc.subject | DIESEL | es_ES |
dc.subject | ACID | es_ES |
dc.subject | CONVERSION | es_ES |
dc.subject | MECHANISM | es_ES |
dc.subject.classification | QUIMICA INORGANICA | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Synthesis of high quality alkyl naphthenic kerosene by reacting an oil refinery with a biomass refinery stream | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c4ee03194f | |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CSD2009-00050/ES/Desarrollo de catalizadores más eficientes para el diseño de procesos químicos sostenibles y produccion limpia de energia/ / | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CTQ2011-27550/ES/TRANSFORMACION CATALITICA DE BIOMASA EN DIESEL Y EN PRODUCTOS QUIMICOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Arias Carrascal, KS.; Climent Olmedo, MJ.; Corma Canós, A.; Iborra Chornet, S. (2015). Synthesis of high quality alkyl naphthenic kerosene by reacting an oil refinery with a biomass refinery stream. Energy and Environmental Science. 8(1):317-331. https://doi.org/10.1039/c4ee03194f | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1039/c4ee03194f | es_ES |
dc.description.upvformatpinicio | 317 | es_ES |
dc.description.upvformatpfin | 331 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.senia | 297467 | es_ES |
dc.identifier.eissn | 1754-5706 | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Instituto de Tecnología Química UPV-CSIC | es_ES |
dc.description.references | Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. Chemical Reviews, 106(9), 4044-4098. doi:10.1021/cr068360d | es_ES |
dc.description.references | Climent, M. J., Corma, A., & Iborra, S. (2014). Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chemistry, 16(2), 516. doi:10.1039/c3gc41492b | es_ES |
dc.description.references | Cheng, Y.-T., Jae, J., Shi, J., Fan, W., & Huber, G. W. (2011). Production of Renewable Aromatic Compounds by Catalytic Fast Pyrolysis of Lignocellulosic Biomass with Bifunctional Ga/ZSM-5 Catalysts. Angewandte Chemie International Edition, 51(6), 1387-1390. doi:10.1002/anie.201107390 | es_ES |
dc.description.references | Gullón, P., Romaní, A., Vila, C., Garrote, G., & Parajó, J. C. (2011). Potential of hydrothermal treatments in lignocellulose biorefineries. Biofuels, Bioproducts and Biorefining, 6(2), 219-232. doi:10.1002/bbb.339 | es_ES |
dc.description.references | Domínguez de María, P. (2013). Recent trends in (ligno)cellulose dissolution using neoteric solvents: switchable, distillable and bio-based ionic liquids. Journal of Chemical Technology & Biotechnology, 89(1), 11-18. doi:10.1002/jctb.4201 | es_ES |
dc.description.references | T. Werpy and G. R.Petersen, Top Value Added Chemicals from Biomass. Volume I. Results of Screening for Potential Candidates from Sugars and Synthesis Gas, U.S.D. Energy, 2004 | es_ES |
dc.description.references | Bozell, J. J., & Petersen, G. R. (2010). Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s «Top 10» revisited. Green Chemistry, 12(4), 539. doi:10.1039/b922014c | es_ES |
dc.description.references | Climent, M. J., Corma, A., & Iborra, S. (2011). Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts. Green Chemistry, 13(3), 520. doi:10.1039/c0gc00639d | es_ES |
dc.description.references | Rosatella, A. A., Simeonov, S. P., Frade, R. F. M., & Afonso, C. A. M. (2011). 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chemistry, 13(4), 754. doi:10.1039/c0gc00401d | es_ES |
dc.description.references | Tong, X., Ma, Y., & Li, Y. (2010). Biomass into chemicals: Conversion of sugars to furan derivatives by catalytic processes. Applied Catalysis A: General, 385(1-2), 1-13. doi:10.1016/j.apcata.2010.06.049 | es_ES |
dc.description.references | Van Putten, R.-J., van der Waal, J. C., de Jong, E., Rasrendra, C. B., Heeres, H. J., & de Vries, J. G. (2013). Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources. Chemical Reviews, 113(3), 1499-1597. doi:10.1021/cr300182k | es_ES |
dc.description.references | Teong, S. P., Yi, G., & Zhang, Y. (2014). Hydroxymethylfurfural production from bioresources: past, present and future. Green Chemistry, 16(4), 2015. doi:10.1039/c3gc42018c | es_ES |
dc.description.references | Nakamura, Y., & Morikawa, S. (1980). The Dehydration of D-Fructose to 5-Hydroxymethyl-2-furaldehyde. Bulletin of the Chemical Society of Japan, 53(12), 3705-3706. doi:10.1246/bcsj.53.3705 | es_ES |
dc.description.references | Roman-Leshkov, Y. (2006). Phase Modifiers Promote Efficient Production of Hydroxymethylfurfural from Fructose. Science, 312(5782), 1933-1937. doi:10.1126/science.1126337 | es_ES |
dc.description.references | Saha, B., & Abu-Omar, M. M. (2014). Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents. Green Chem., 16(1), 24-38. doi:10.1039/c3gc41324a | es_ES |
dc.description.references | S. Frenzel , S.Peters, T.Rose and M.Kunz, Industrial Sucrose, in Sustainable Solutions for Modern Economies, ed. R. Höfer, RSC Green Chemistry, No 4, RSC Publ., Cambridge, 2009, pp. 264–299 | es_ES |
dc.description.references | Biochem AVA (2014) First Industrial Production for Renewable 5-HMF, http://www.ava-biochem.com/media/downloads-EN/press-releases/First-Industrial-Production-For-Renewable-5-HMF.pdf, accessed April 16, 2014 | es_ES |
dc.description.references | Chheda, J. N., Huber, G. W., & Dumesic, J. A. (2007). Liquid-Phase Catalytic Processing of Biomass-Derived Oxygenated Hydrocarbons to Fuels and Chemicals. Angewandte Chemie International Edition, 46(38), 7164-7183. doi:10.1002/anie.200604274 | es_ES |
dc.description.references | Bond, J. Q., Alonso, D. M., Wang, D., West, R. M., & Dumesic, J. A. (2010). Integrated Catalytic Conversion of -Valerolactone to Liquid Alkenes for Transportation Fuels. Science, 327(5969), 1110-1114. doi:10.1126/science.1184362 | es_ES |
dc.description.references | Corma, A., Renz, M., & Schaverien, C. (2008). Coupling Fatty Acids by Ketonic Decarboxylation Using Solid Catalysts for the Direct Production of Diesel, Lubricants, and Chemicals. ChemSusChem, 1(8-9), 739-741. doi:10.1002/cssc.200800103 | es_ES |
dc.description.references | Serrano-Ruiz, J. C., Braden, D. J., West, R. M., & Dumesic, J. A. (2010). Conversion of cellulose to hydrocarbon fuels by progressive removal of oxygen. Applied Catalysis B: Environmental, 100(1-2), 184-189. doi:10.1016/j.apcatb.2010.07.029 | es_ES |
dc.description.references | Pulido, A., Oliver-Tomas, B., Renz, M., Boronat, M., & Corma, A. (2012). Ketonic Decarboxylation Reaction Mechanism: A Combined Experimental and DFT Study. ChemSusChem, 6(1), 141-151. doi:10.1002/cssc.201200419 | es_ES |
dc.description.references | Kunkes, E. L., Simonetti, D. A., West, R. M., Serrano-Ruiz, J. C., Gartner, C. A., & Dumesic, J. A. (2008). Catalytic Conversion of Biomass to Monofunctional Hydrocarbons and Targeted Liquid-Fuel Classes. Science, 322(5900), 417-421. doi:10.1126/science.1159210 | es_ES |
dc.description.references | Corma, A., de la Torre, O., Renz, M., & Villandier, N. (2011). Production of High-Quality Diesel from Biomass Waste Products. Angewandte Chemie International Edition, 50(10), 2375-2378. doi:10.1002/anie.201007508 | es_ES |
dc.description.references | Corma, A., de la Torre, O., & Renz, M. (2011). High-Quality Diesel from Hexose- and Pentose-Derived Biomass Platform Molecules. ChemSusChem, 4(11), 1574-1577. doi:10.1002/cssc.201100296 | es_ES |
dc.description.references | Corma, A., de la Torre, O., & Renz, M. (2012). Production of high quality diesel from cellulose and hemicellulose by the Sylvan process: catalysts and process variables. Energy & Environmental Science, 5(4), 6328. doi:10.1039/c2ee02778j | es_ES |
dc.description.references | Huber, G. W. (2005). Production of Liquid Alkanes by Aqueous-Phase Processing of Biomass-Derived Carbohydrates. Science, 308(5727), 1446-1450. doi:10.1126/science.1111166 | es_ES |
dc.description.references | Barrett, C. J., Chheda, J. N., Huber, G. W., & Dumesic, J. A. (2006). Single-reactor process for sequential aldol-condensation and hydrogenation of biomass-derived compounds in water. Applied Catalysis B: Environmental, 66(1-2), 111-118. doi:10.1016/j.apcatb.2006.03.001 | es_ES |
dc.description.references | Iovel, I., Mertins, K., Kischel, J., Zapf, A., & Beller, M. (2005). An Efficient and General Iron-Catalyzed Arylation of Benzyl Alcohols and Benzyl Carboxylates. Angewandte Chemie International Edition, 44(25), 3913-3917. doi:10.1002/anie.200462522 | es_ES |
dc.description.references | Zhou, X., & Rauchfuss, T. B. (2012). Production of Hybrid Diesel Fuel Precursors from Carbohydrates and Petrochemicals Using Formic Acid as a Reactive Solvent. ChemSusChem, 6(2), 383-388. doi:10.1002/cssc.201200718 | es_ES |
dc.description.references | Onorato, A., Pavlik, C., Invernale, M. A., Berghorn, I. D., Sotzing, G. A., Morton, M. D., & Smith, M. B. (2011). Polymer-mediated cyclodehydration of alditols and ketohexoses. Carbohydrate Research, 346(13), 1662-1670. doi:10.1016/j.carres.2011.04.017 | es_ES |
dc.description.references | Bidart, A. M. F., Borges, A. P. S., Nogueira, L., Lachter, E. R., & Mota, C. J. A. (2001). Catalysis Letters, 75(3/4), 155-157. doi:10.1023/a:1016748206714 | es_ES |
dc.description.references | Okumura, K., Nishigaki, K., & Niwa, M. (2001). Prominent catalytic activity of Ga-containing MCM-41 in the Friedel–Crafts alkylation. Microporous and Mesoporous Materials, 44-45, 509-516. doi:10.1016/s1387-1811(01)00228-1 | es_ES |
dc.description.references | KALITA, P., GUPTA, N., & KUMAR, R. (2007). Synergistic role of acid sites in the Ce-enhanced activity of mesoporous Ce–Al-MCM-41 catalysts in alkylation reactions: FTIR and TPD-ammonia studies. Journal of Catalysis, 245(2), 338-347. doi:10.1016/j.jcat.2006.10.022 | es_ES |
dc.description.references | Sun, Y., & Prins, R. (2008). Friedel-Crafts alkylations over hierarchical zeolite catalysts. Applied Catalysis A: General, 336(1-2), 11-16. doi:10.1016/j.apcata.2007.08.015 | es_ES |
dc.description.references | Climent, M. J., Corma, A., García, H., & Primo, J. (1989). Zeolites in organic reactions. Applied Catalysis, 51(1), 113-125. doi:10.1016/s0166-9834(00)80199-2 | es_ES |
dc.description.references | S. Al-Khattaf , M. A.Ali and J.Cejka, Recent Development in Transformation of Aromatic Hydrocarbons over Zeolites, in Zeolites and Catalysis, ed. J. Cejka, A. Corma and S. Zones, Wiley-VCH, Weinheim, 2010, vol. 2, pp. 623–648 | es_ES |
dc.description.references | Verboekend, D., & Pérez-Ramírez, J. (2011). Design of hierarchical zeolite catalysts by desilication. Catalysis Science & Technology, 1(6), 879. doi:10.1039/c1cy00150g | es_ES |
dc.description.references | Gounder, R., & Iglesia, E. (2013). The catalytic diversity of zeolites: confinement and solvation effects within voids of molecular dimensions. Chemical Communications, 49(34), 3491. doi:10.1039/c3cc40731d | es_ES |
dc.description.references | Yamato, T., Hideshima, C., Prakash, G. K. S., & Olah, G. A. (1991). Solid superacid-catalyzed organic synthesis. 4. Perfluorinated resinsulfonic acid (Nafion-H) catalyzed Friedel-Crafts benzylation of benzene and substituted benzenes. The Journal of Organic Chemistry, 56(6), 2089-2091. doi:10.1021/jo00006a023 | es_ES |
dc.description.references | Corma, A., Zicovich-Wilson, C., & Viruela, P. (1994). Orbital-controlled reactions catalysed by zeolites: Electrophilic alkylation of aromatics. Journal of Physical Organic Chemistry, 7(7), 364-370. doi:10.1002/poc.610070706 | es_ES |
dc.description.references | VANDERBEKEN, S., DEJAEGERE, E., TEHRANI, K., PAUL, J., JACOBS, P., BARON, G., & DENAYER, J. (2005). Alkylation of deactivated aromatic compounds on zeolites. Adsorption, deactivation and selectivity effects in the alkylation of bromobenzene and toluene with bifunctional alkylating agents. Journal of Catalysis, 235(1), 128-138. doi:10.1016/j.jcat.2005.06.029 | es_ES |
dc.description.references | PINE, L. (1984). Prediction of cracking catalyst behavior by a zeolite unit cell size model. Journal of Catalysis, 85(2), 466-476. doi:10.1016/0021-9517(84)90235-5 | es_ES |
dc.description.references | Verboekend, D., Vilé, G., & Pérez-Ramírez, J. (2011). Hierarchical Y and USY Zeolites Designed by Post-Synthetic Strategies. Advanced Functional Materials, 22(5), 916-928. doi:10.1002/adfm.201102411 | es_ES |
dc.description.references | Klinowski, J., Thomas, J. M., Fyfe, C. A., & Gobbi, G. C. (1982). Monitoring of structural changes accompanying ultrastabilization of faujasitic zeolite catalysts. Nature, 296(5857), 533-536. doi:10.1038/296533a0 | es_ES |
dc.description.references | Leonowicz, M. E., Lawton, J. A., Lawton, S. L., & Rubin, M. K. (1994). MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems. Science, 264(5167), 1910-1913. doi:10.1126/science.264.5167.1910 | es_ES |
dc.description.references | Corma, A., Martı́nez-Soria, V., & Schnoeveld, E. (2000). Alkylation of Benzene with Short-Chain Olefins over MCM-22 Zeolite: Catalytic Behaviour and Kinetic Mechanism. Journal of Catalysis, 192(1), 163-173. doi:10.1006/jcat.2000.2849 | es_ES |
dc.description.references | Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592 | es_ES |
dc.description.references | Zanardi, S., Alberti, A., Cruciani, G., Corma, A., Fornés, V., & Brunelli, M. (2004). Crystal Structure Determination of Zeolite Nu-6(2) and Its Layered Precursor Nu-6(1). Angewandte Chemie International Edition, 43(37), 4933-4937. doi:10.1002/anie.200460085 | es_ES |
dc.description.references | Corma, A., Díaz, U., García, T., Sastre, G., & Velty, A. (2010). Multifunctional Hybrid Organic−Inorganic Catalytic Materials with a Hierarchical System of Well-Defined Micro- and Mesopores. Journal of the American Chemical Society, 132(42), 15011-15021. doi:10.1021/ja106272z | es_ES |
dc.description.references | Díaz, U., Fornés, V., & Corma, A. (2006). On the mechanism of zeolite growing: Crystallization by seeding with delayered zeolites. Microporous and Mesoporous Materials, 90(1-3), 73-80. doi:10.1016/j.micromeso.2005.09.025 | es_ES |
dc.description.references | Aguilar, J., Pergher, S. B. C., Detoni, C., Corma, A., Melo, F. V., & Sastre, E. (2008). Alkylation of biphenyl with propylene using MCM-22 and ITQ-2 zeolites. Catalysis Today, 133-135, 667-672. doi:10.1016/j.cattod.2007.11.057 | es_ES |
dc.description.references | Lugo, H. J., Ragone, G., & Zambrano, J. (1999). Correlations between Octane Numbers and Catalytic Cracking Naphtha Composition. Industrial & Engineering Chemistry Research, 38(5), 2171-2176. doi:10.1021/ie980273r | es_ES |
dc.description.references | Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0 | es_ES |
dc.description.references | Emeis, C. A. (1993). Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts. Journal of Catalysis, 141(2), 347-354. doi:10.1006/jcat.1993.1145 | es_ES |
dc.description.references | D. W. Breck and E.Flanigen, Molecular Sieves, Society of Chemical Industry, 1968, p. 47 | es_ES |
dc.description.references | Fichtner-Schmittler, H., Lohse, U., Engelhardt, G., & Patzelová, V. (1984). Unit cell constants of zeolites stabilized by dealumination determination of Al content from lattice parameters. Crystal Research and Technology, 19(1), K1-K3. doi:10.1002/crat.2170190124 | es_ES |