- -

Synthesis of high quality alkyl naphthenic kerosene by reacting an oil refinery with a biomass refinery stream

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthesis of high quality alkyl naphthenic kerosene by reacting an oil refinery with a biomass refinery stream

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Arias Carrascal, Karen Sulay es_ES
dc.contributor.author Climent Olmedo, María José es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.contributor.author Iborra Chornet, Sara es_ES
dc.date.accessioned 2016-06-02T11:37:18Z
dc.date.available 2016-06-02T11:37:18Z
dc.date.issued 2015
dc.identifier.issn 1754-5692
dc.identifier.uri http://hdl.handle.net/10251/65116
dc.description.abstract Alkylation of aromatics with HMF is a new route for the synthesis of biofuels. Alkylation of toluene with HMF has been studied in the presence of large pore (HBeta, USY and Mordenite), delaminated zeolites as well as on mesoporous aluminosilicates. In all cases a mixture of monoalkylated products of 5-(o-, m- and p-methyl)benzylfuran-2-carbaldehyde and OBMF coming from self etherification of HMF were obtained. Large pore 3D (USY) and especially 2D (ITQ-2) zeolites are active and selective catalysts for this transformation. The alkylation reaction was extended successfully to other substituted benzenes as well as to a heavy reformate mixture as source aromatic compounds, achieving 91% yield of alkylated products with 93% selectivity. Further hydrodeoxygenation of alkylated compounds in a fixed bed continuous reactor was performed using Pt/C and Pt/TiO2 as catalysts allowing to obtain a hydrocarbon mixture containing alkylcyclohexane compounds that can be used as high quality kerosene. es_ES
dc.description.sponsorship Financial support by Consolider-Ingenio 2010 (project MULTICAT), Spanish MICINN Project CTQ-2011-27550), Generalitat Valenciana (Prometeo program) and Program Severo Ochoa are gratefully acknowledged. This work was supported by Consolider. KSA is grateful to ITQ for a doctoral grant. en_EN
dc.language Inglés es_ES
dc.publisher Royal Society of Chemistry es_ES
dc.relation Program Severo Ochoa es_ES
dc.relation.ispartof Energy and Environmental Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject HIERARCHICAL ZEOLITE CATALYSTS es_ES
dc.subject FRIEDEL-CRAFTS ALKYLATION es_ES
dc.subject TRANSPORTATION FUELS es_ES
dc.subject PLATFORM MOLECULES es_ES
dc.subject AROMATIC-COMPOUNDS es_ES
dc.subject D-FRUCTOSE es_ES
dc.subject DIESEL es_ES
dc.subject ACID es_ES
dc.subject CONVERSION es_ES
dc.subject MECHANISM es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Synthesis of high quality alkyl naphthenic kerosene by reacting an oil refinery with a biomass refinery stream es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c4ee03194f
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CSD2009-00050/ES/Desarrollo de catalizadores más eficientes para el diseño de procesos químicos sostenibles y produccion limpia de energia/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTQ2011-27550/ES/TRANSFORMACION CATALITICA DE BIOMASA EN DIESEL Y EN PRODUCTOS QUIMICOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Arias Carrascal, KS.; Climent Olmedo, MJ.; Corma Canós, A.; Iborra Chornet, S. (2015). Synthesis of high quality alkyl naphthenic kerosene by reacting an oil refinery with a biomass refinery stream. Energy and Environmental Science. 8(1):317-331. https://doi.org/10.1039/c4ee03194f es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1039/c4ee03194f es_ES
dc.description.upvformatpinicio 317 es_ES
dc.description.upvformatpfin 331 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 297467 es_ES
dc.identifier.eissn 1754-5706
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Instituto de Tecnología Química UPV-CSIC es_ES
dc.description.references Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of Transportation Fuels from Biomass:  Chemistry, Catalysts, and Engineering. Chemical Reviews, 106(9), 4044-4098. doi:10.1021/cr068360d es_ES
dc.description.references Climent, M. J., Corma, A., & Iborra, S. (2014). Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chemistry, 16(2), 516. doi:10.1039/c3gc41492b es_ES
dc.description.references Cheng, Y.-T., Jae, J., Shi, J., Fan, W., & Huber, G. W. (2011). Production of Renewable Aromatic Compounds by Catalytic Fast Pyrolysis of Lignocellulosic Biomass with Bifunctional Ga/ZSM-5 Catalysts. Angewandte Chemie International Edition, 51(6), 1387-1390. doi:10.1002/anie.201107390 es_ES
dc.description.references Gullón, P., Romaní, A., Vila, C., Garrote, G., & Parajó, J. C. (2011). Potential of hydrothermal treatments in lignocellulose biorefineries. Biofuels, Bioproducts and Biorefining, 6(2), 219-232. doi:10.1002/bbb.339 es_ES
dc.description.references Domínguez de María, P. (2013). Recent trends in (ligno)cellulose dissolution using neoteric solvents: switchable, distillable and bio-based ionic liquids. Journal of Chemical Technology & Biotechnology, 89(1), 11-18. doi:10.1002/jctb.4201 es_ES
dc.description.references T. Werpy and G. R.Petersen, Top Value Added Chemicals from Biomass. Volume I. Results of Screening for Potential Candidates from Sugars and Synthesis Gas, U.S.D. Energy, 2004 es_ES
dc.description.references Bozell, J. J., & Petersen, G. R. (2010). Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s «Top 10» revisited. Green Chemistry, 12(4), 539. doi:10.1039/b922014c es_ES
dc.description.references Climent, M. J., Corma, A., & Iborra, S. (2011). Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts. Green Chemistry, 13(3), 520. doi:10.1039/c0gc00639d es_ES
dc.description.references Rosatella, A. A., Simeonov, S. P., Frade, R. F. M., & Afonso, C. A. M. (2011). 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chemistry, 13(4), 754. doi:10.1039/c0gc00401d es_ES
dc.description.references Tong, X., Ma, Y., & Li, Y. (2010). Biomass into chemicals: Conversion of sugars to furan derivatives by catalytic processes. Applied Catalysis A: General, 385(1-2), 1-13. doi:10.1016/j.apcata.2010.06.049 es_ES
dc.description.references Van Putten, R.-J., van der Waal, J. C., de Jong, E., Rasrendra, C. B., Heeres, H. J., & de Vries, J. G. (2013). Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources. Chemical Reviews, 113(3), 1499-1597. doi:10.1021/cr300182k es_ES
dc.description.references Teong, S. P., Yi, G., & Zhang, Y. (2014). Hydroxymethylfurfural production from bioresources: past, present and future. Green Chemistry, 16(4), 2015. doi:10.1039/c3gc42018c es_ES
dc.description.references Nakamura, Y., & Morikawa, S. (1980). The Dehydration of D-Fructose to 5-Hydroxymethyl-2-furaldehyde. Bulletin of the Chemical Society of Japan, 53(12), 3705-3706. doi:10.1246/bcsj.53.3705 es_ES
dc.description.references Roman-Leshkov, Y. (2006). Phase Modifiers Promote Efficient Production of Hydroxymethylfurfural from Fructose. Science, 312(5782), 1933-1937. doi:10.1126/science.1126337 es_ES
dc.description.references Saha, B., & Abu-Omar, M. M. (2014). Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents. Green Chem., 16(1), 24-38. doi:10.1039/c3gc41324a es_ES
dc.description.references S. Frenzel , S.Peters, T.Rose and M.Kunz, Industrial Sucrose, in Sustainable Solutions for Modern Economies, ed. R. Höfer, RSC Green Chemistry, No 4, RSC Publ., Cambridge, 2009, pp. 264–299 es_ES
dc.description.references Biochem AVA (2014) First Industrial Production for Renewable 5-HMF, http://www.ava-biochem.com/media/downloads-EN/press-releases/First-Industrial-Production-For-Renewable-5-HMF.pdf, accessed April 16, 2014 es_ES
dc.description.references Chheda, J. N., Huber, G. W., & Dumesic, J. A. (2007). Liquid-Phase Catalytic Processing of Biomass-Derived Oxygenated Hydrocarbons to Fuels and Chemicals. Angewandte Chemie International Edition, 46(38), 7164-7183. doi:10.1002/anie.200604274 es_ES
dc.description.references Bond, J. Q., Alonso, D. M., Wang, D., West, R. M., & Dumesic, J. A. (2010). Integrated Catalytic Conversion of  -Valerolactone to Liquid Alkenes for Transportation Fuels. Science, 327(5969), 1110-1114. doi:10.1126/science.1184362 es_ES
dc.description.references Corma, A., Renz, M., & Schaverien, C. (2008). Coupling Fatty Acids by Ketonic Decarboxylation Using Solid Catalysts for the Direct Production of Diesel, Lubricants, and Chemicals. ChemSusChem, 1(8-9), 739-741. doi:10.1002/cssc.200800103 es_ES
dc.description.references Serrano-Ruiz, J. C., Braden, D. J., West, R. M., & Dumesic, J. A. (2010). Conversion of cellulose to hydrocarbon fuels by progressive removal of oxygen. Applied Catalysis B: Environmental, 100(1-2), 184-189. doi:10.1016/j.apcatb.2010.07.029 es_ES
dc.description.references Pulido, A., Oliver-Tomas, B., Renz, M., Boronat, M., & Corma, A. (2012). Ketonic Decarboxylation Reaction Mechanism: A Combined Experimental and DFT Study. ChemSusChem, 6(1), 141-151. doi:10.1002/cssc.201200419 es_ES
dc.description.references Kunkes, E. L., Simonetti, D. A., West, R. M., Serrano-Ruiz, J. C., Gartner, C. A., & Dumesic, J. A. (2008). Catalytic Conversion of Biomass to Monofunctional Hydrocarbons and Targeted Liquid-Fuel Classes. Science, 322(5900), 417-421. doi:10.1126/science.1159210 es_ES
dc.description.references Corma, A., de la Torre, O., Renz, M., & Villandier, N. (2011). Production of High-Quality Diesel from Biomass Waste Products. Angewandte Chemie International Edition, 50(10), 2375-2378. doi:10.1002/anie.201007508 es_ES
dc.description.references Corma, A., de la Torre, O., & Renz, M. (2011). High-Quality Diesel from Hexose- and Pentose-Derived Biomass Platform Molecules. ChemSusChem, 4(11), 1574-1577. doi:10.1002/cssc.201100296 es_ES
dc.description.references Corma, A., de la Torre, O., & Renz, M. (2012). Production of high quality diesel from cellulose and hemicellulose by the Sylvan process: catalysts and process variables. Energy & Environmental Science, 5(4), 6328. doi:10.1039/c2ee02778j es_ES
dc.description.references Huber, G. W. (2005). Production of Liquid Alkanes by Aqueous-Phase Processing of Biomass-Derived Carbohydrates. Science, 308(5727), 1446-1450. doi:10.1126/science.1111166 es_ES
dc.description.references Barrett, C. J., Chheda, J. N., Huber, G. W., & Dumesic, J. A. (2006). Single-reactor process for sequential aldol-condensation and hydrogenation of biomass-derived compounds in water. Applied Catalysis B: Environmental, 66(1-2), 111-118. doi:10.1016/j.apcatb.2006.03.001 es_ES
dc.description.references Iovel, I., Mertins, K., Kischel, J., Zapf, A., & Beller, M. (2005). An Efficient and General Iron-Catalyzed Arylation of Benzyl Alcohols and Benzyl Carboxylates. Angewandte Chemie International Edition, 44(25), 3913-3917. doi:10.1002/anie.200462522 es_ES
dc.description.references Zhou, X., & Rauchfuss, T. B. (2012). Production of Hybrid Diesel Fuel Precursors from Carbohydrates and Petrochemicals Using Formic Acid as a Reactive Solvent. ChemSusChem, 6(2), 383-388. doi:10.1002/cssc.201200718 es_ES
dc.description.references Onorato, A., Pavlik, C., Invernale, M. A., Berghorn, I. D., Sotzing, G. A., Morton, M. D., & Smith, M. B. (2011). Polymer-mediated cyclodehydration of alditols and ketohexoses. Carbohydrate Research, 346(13), 1662-1670. doi:10.1016/j.carres.2011.04.017 es_ES
dc.description.references Bidart, A. M. F., Borges, A. P. S., Nogueira, L., Lachter, E. R., & Mota, C. J. A. (2001). Catalysis Letters, 75(3/4), 155-157. doi:10.1023/a:1016748206714 es_ES
dc.description.references Okumura, K., Nishigaki, K., & Niwa, M. (2001). Prominent catalytic activity of Ga-containing MCM-41 in the Friedel–Crafts alkylation. Microporous and Mesoporous Materials, 44-45, 509-516. doi:10.1016/s1387-1811(01)00228-1 es_ES
dc.description.references KALITA, P., GUPTA, N., & KUMAR, R. (2007). Synergistic role of acid sites in the Ce-enhanced activity of mesoporous Ce–Al-MCM-41 catalysts in alkylation reactions: FTIR and TPD-ammonia studies. Journal of Catalysis, 245(2), 338-347. doi:10.1016/j.jcat.2006.10.022 es_ES
dc.description.references Sun, Y., & Prins, R. (2008). Friedel-Crafts alkylations over hierarchical zeolite catalysts. Applied Catalysis A: General, 336(1-2), 11-16. doi:10.1016/j.apcata.2007.08.015 es_ES
dc.description.references Climent, M. J., Corma, A., García, H., & Primo, J. (1989). Zeolites in organic reactions. Applied Catalysis, 51(1), 113-125. doi:10.1016/s0166-9834(00)80199-2 es_ES
dc.description.references S. Al-Khattaf , M. A.Ali and J.Cejka, Recent Development in Transformation of Aromatic Hydrocarbons over Zeolites, in Zeolites and Catalysis, ed. J. Cejka, A. Corma and S. Zones, Wiley-VCH, Weinheim, 2010, vol. 2, pp. 623–648 es_ES
dc.description.references Verboekend, D., & Pérez-Ramírez, J. (2011). Design of hierarchical zeolite catalysts by desilication. Catalysis Science & Technology, 1(6), 879. doi:10.1039/c1cy00150g es_ES
dc.description.references Gounder, R., & Iglesia, E. (2013). The catalytic diversity of zeolites: confinement and solvation effects within voids of molecular dimensions. Chemical Communications, 49(34), 3491. doi:10.1039/c3cc40731d es_ES
dc.description.references Yamato, T., Hideshima, C., Prakash, G. K. S., & Olah, G. A. (1991). Solid superacid-catalyzed organic synthesis. 4. Perfluorinated resinsulfonic acid (Nafion-H) catalyzed Friedel-Crafts benzylation of benzene and substituted benzenes. The Journal of Organic Chemistry, 56(6), 2089-2091. doi:10.1021/jo00006a023 es_ES
dc.description.references Corma, A., Zicovich-Wilson, C., & Viruela, P. (1994). Orbital-controlled reactions catalysed by zeolites: Electrophilic alkylation of aromatics. Journal of Physical Organic Chemistry, 7(7), 364-370. doi:10.1002/poc.610070706 es_ES
dc.description.references VANDERBEKEN, S., DEJAEGERE, E., TEHRANI, K., PAUL, J., JACOBS, P., BARON, G., & DENAYER, J. (2005). Alkylation of deactivated aromatic compounds on zeolites. Adsorption, deactivation and selectivity effects in the alkylation of bromobenzene and toluene with bifunctional alkylating agents. Journal of Catalysis, 235(1), 128-138. doi:10.1016/j.jcat.2005.06.029 es_ES
dc.description.references PINE, L. (1984). Prediction of cracking catalyst behavior by a zeolite unit cell size model. Journal of Catalysis, 85(2), 466-476. doi:10.1016/0021-9517(84)90235-5 es_ES
dc.description.references Verboekend, D., Vilé, G., & Pérez-Ramírez, J. (2011). Hierarchical Y and USY Zeolites Designed by Post-Synthetic Strategies. Advanced Functional Materials, 22(5), 916-928. doi:10.1002/adfm.201102411 es_ES
dc.description.references Klinowski, J., Thomas, J. M., Fyfe, C. A., & Gobbi, G. C. (1982). Monitoring of structural changes accompanying ultrastabilization of faujasitic zeolite catalysts. Nature, 296(5857), 533-536. doi:10.1038/296533a0 es_ES
dc.description.references Leonowicz, M. E., Lawton, J. A., Lawton, S. L., & Rubin, M. K. (1994). MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems. Science, 264(5167), 1910-1913. doi:10.1126/science.264.5167.1910 es_ES
dc.description.references Corma, A., Martı́nez-Soria, V., & Schnoeveld, E. (2000). Alkylation of Benzene with Short-Chain Olefins over MCM-22 Zeolite: Catalytic Behaviour and Kinetic Mechanism. Journal of Catalysis, 192(1), 163-173. doi:10.1006/jcat.2000.2849 es_ES
dc.description.references Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592 es_ES
dc.description.references Zanardi, S., Alberti, A., Cruciani, G., Corma, A., Fornés, V., & Brunelli, M. (2004). Crystal Structure Determination of Zeolite Nu-6(2) and Its Layered Precursor Nu-6(1). Angewandte Chemie International Edition, 43(37), 4933-4937. doi:10.1002/anie.200460085 es_ES
dc.description.references Corma, A., Díaz, U., García, T., Sastre, G., & Velty, A. (2010). Multifunctional Hybrid Organic−Inorganic Catalytic Materials with a Hierarchical System of Well-Defined Micro- and Mesopores. Journal of the American Chemical Society, 132(42), 15011-15021. doi:10.1021/ja106272z es_ES
dc.description.references Díaz, U., Fornés, V., & Corma, A. (2006). On the mechanism of zeolite growing: Crystallization by seeding with delayered zeolites. Microporous and Mesoporous Materials, 90(1-3), 73-80. doi:10.1016/j.micromeso.2005.09.025 es_ES
dc.description.references Aguilar, J., Pergher, S. B. C., Detoni, C., Corma, A., Melo, F. V., & Sastre, E. (2008). Alkylation of biphenyl with propylene using MCM-22 and ITQ-2 zeolites. Catalysis Today, 133-135, 667-672. doi:10.1016/j.cattod.2007.11.057 es_ES
dc.description.references Lugo, H. J., Ragone, G., & Zambrano, J. (1999). Correlations between Octane Numbers and Catalytic Cracking Naphtha Composition. Industrial & Engineering Chemistry Research, 38(5), 2171-2176. doi:10.1021/ie980273r es_ES
dc.description.references Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0 es_ES
dc.description.references Emeis, C. A. (1993). Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts. Journal of Catalysis, 141(2), 347-354. doi:10.1006/jcat.1993.1145 es_ES
dc.description.references D. W. Breck and E.Flanigen, Molecular Sieves, Society of Chemical Industry, 1968, p. 47 es_ES
dc.description.references Fichtner-Schmittler, H., Lohse, U., Engelhardt, G., & Patzelová, V. (1984). Unit cell constants of zeolites stabilized by dealumination determination of Al content from lattice parameters. Crystal Research and Technology, 19(1), K1-K3. doi:10.1002/crat.2170190124 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem