- -

Efficiency of Evolutionary Algorithms in Water Network Pipe Sizing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Efficiency of Evolutionary Algorithms in Water Network Pipe Sizing

Mostrar el registro completo del ítem

Mora Meliá, D.; Iglesias Rey, PL.; Martínez-Solano, FJ.; Ballesteros-Pérez, P. (2015). Efficiency of Evolutionary Algorithms in Water Network Pipe Sizing. Water Resources Management. 29(13):4817-4831. https://doi.org/10.1007/s11269-015-1092-x

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/65160

Ficheros en el ítem

Metadatos del ítem

Título: Efficiency of Evolutionary Algorithms in Water Network Pipe Sizing
Autor: Mora Meliá, Daniel Iglesias Rey, Pedro Luis Martínez-Solano, F. Javier Ballesteros-Pérez, P.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Fecha difusión:
Resumen:
The pipe sizing of water networks via evolutionary algorithms is of great interest because it allows the selection of alternative economical solutions that meet a set of design requirements. However, available evolutionary ...[+]
Palabras clave: Evolutionary algorithms , Design , Water networks , Efficiency , Pipe sizing
Derechos de uso: Reserva de todos los derechos
Fuente:
Water Resources Management. (issn: 0920-4741 ) (eissn: 1573-1650 )
DOI: 10.1007/s11269-015-1092-x
Editorial:
Springer
Versión del editor: http://dx.doi.org/10.1007/s11269-015-1092-x
Código del Proyecto:
info:eu-repo/grantAgreement/CONICYT//11140128/
info:eu-repo/grantAgreement/CONICYT//11130666/
Agradecimientos:
This research study was funded by the Chilean CONICYT grant under the Program FONDECYT Initiation for research in 2013 and 2014 (Project folio 11130666 and 11140128, respectively).
Tipo: Artículo

References

Afshar A, Kazemi H, Saadatpour M (2011) Particle swarm optimization for automatic calibration of large scale water quality model (CE-QUAL-W2): application to Karkheh Reservoir, Iran. Water Resour Manag 25:2613–2632. doi: 10.1007/s11269-011-9829-7

Afshar A, Shojaei N, Sagharjooghifarahani M (2013) Multiobjective calibration of reservoir water quality modeling using Multiobjective Particle Swarm Optimization (MOPSO). Water Resour Manag 27:1931–1947. doi: 10.1007/s11269-013-0263-x

Alperovits E, Shamir U (1977) Design of optimal water distribution systems. Water Resour Res 13:885–900. doi: 10.1029/WR013i006p00885 [+]
Afshar A, Kazemi H, Saadatpour M (2011) Particle swarm optimization for automatic calibration of large scale water quality model (CE-QUAL-W2): application to Karkheh Reservoir, Iran. Water Resour Manag 25:2613–2632. doi: 10.1007/s11269-011-9829-7

Afshar A, Shojaei N, Sagharjooghifarahani M (2013) Multiobjective calibration of reservoir water quality modeling using Multiobjective Particle Swarm Optimization (MOPSO). Water Resour Manag 27:1931–1947. doi: 10.1007/s11269-013-0263-x

Alperovits E, Shamir U (1977) Design of optimal water distribution systems. Water Resour Res 13:885–900. doi: 10.1029/WR013i006p00885

Araujo LS, Ramos H, Coelho ST (2006) Pressure control for leakage minimisation in water distribution systems management. Water Resour Manag 20:133–149. doi: 10.1007/s11269-006-4635-3

Artita KS, Kaini P, Nicklow JW (2013) Examining the possibilities: generating alternative watershed-scale BMP designs with evolutionary algorithms. Water Resour Manag 27:3849–3863. doi: 10.1007/s11269-013-0375-3

Barlow E, Tanyimboh TT (2014) Multiobjective memetic algorithm applied to the optimisation of water distribution systems. Water Resour Manag 28:2229–2242. doi: 10.1007/s11269-014-0608-0

Chung G, Lansey K (2008) Application of the shuffled frog leaping algorithm for the optimization of a general large-scale water supply system. Water Resour Manag 23:797–823. doi: 10.1007/s11269-008-9300-6

Elbeltagi E, Hegazy T, Grierson D (2007) A modified shuffled frog-leaping optimization algorithm: applications to project management. Struct Infrastruct Eng 3:53–60. doi: 10.1080/15732470500254535

Eusuff MM, Lansey KE (2003) Optimization of water distribution network design using the shuffled frog leaping algorithm. J Water Resour Plan Manag 129:210–225. doi: 10.1061/(ASCE)0733-9496(2003)129:3(210)

Fujiwara O, Khang DB (1990) A two-phase decomposition method for optimal design of looped water distribution networks. Water Resour Res 26:539–549. doi: 10.1029/WR026i004p00539

Geem ZW (2006) Optimal cost design of water distribution networks using harmony search. Eng Optim 38:259–277. doi: 10.1080/03052150500467430

Gomes H, de Bezerra STM, de Carvalho P, Salvino M (2009) Optimal dimensioning model of water distribution systems. Water SA 35:421–431. doi: 10.4314/wsa.v35i4

Haddad OB, Tabari MMR, Fallah-Mehdipour E, Mariño MA (2013) Groundwater model calibration by meta-heuristic algorithms. Water Resour Manag 27:2515–2529. doi: 10.1007/s11269-013-0300-9

Iglesias-Rey PL, Martínez-Solano FJ, Mora-Meliá D, Martínez-Solano PD (2014) BBLAWN: a combined use of best management practices and an optimization model based on a pseudo-genetic algorithm. Procedia Eng 89:29–36. doi: 10.1016/j.proeng.2014.11.156

Jin Y-X, Cheng H-Z, Yan J, Zhang L (2007) New discrete method for particle swarm optimization and its application in transmission network expansion planning. Electr Power Syst Res 77:227–233. doi: 10.1016/j.epsr.2006.02.016

Kennedy J, Eberhart R (1995) Particle swarm optimization. Proceedings of ICNN’95 - International Conference on Neural Networks. IEEE, pp 1942–1948. doi: 10.1109/ICNN.1995.488968

Kim JH, Kim TG, Kim JH, Yoon YN (1994) A study on the pipe network system design using non-linear programming. J Korean Water Resour Assoc 27:59–67

Kollat JB, Reed PM (2006) Comparing state-of-the-art evolutionary multi-objective algorithms for long-term groundwater monitoring design. Adv Water Resour 29:792–807. doi: 10.1016/j.advwatres.2005.07.010

Louati MH, Benabdallah S, Lebdi F, Milutin D (2011) Application of a genetic algorithm for the optimization of a complex reservoir system in tunisia. Water Resour Manag 25:2387–2404. doi: 10.1007/s11269-011-9814-1

Marchi A, Dandy G, Wilkins A, Rohrlach H (2014) Methodology for Comparing Evolutionary Algorithms for Optimization of Water Distribution Systems. doi: 10.1061/(ASCE)WR.1943-5452.0000321

Mora-Melia D, Iglesias-Rey P, Fuertes-Miquel V, Martinez-Solano F (2010) Application of the harmony search algorithm to water distribution networks design. Taylor & Francis Group. pp 265–271. doi: 10.1201/b10999-67

Mora-Melia D, Iglesias-Rey PL, Martinez-Solano FJ, Fuertes-Miquel VS (2013) Design of water distribution networks using a pseudo-genetic algorithm and sensitivity of genetic operators. Water Resour Manag 27:4149–4162. doi: 10.1007/s11269-013-0400-6

Ostadrahimi L, Mariño MA, Afshar A (2011) Multi-reservoir operation rules: multi-swarm PSO-based optimization approach. Water Resour Manag 26:407–427. doi: 10.1007/s11269-011-9924-9

Rossman LA (2000) EPANET 2.0 User’s manual. EPA/600/R-00/057, Water Supply and Water Resources Div., National Risk Management Research Laboratory, Cincinnatti (USA)

Savic DA, Walters GA (1997) Genetic algorithms for least-cost design of water distribution networks. J Water Resour Plan Manag 123:67–77. doi: 10.1061/(ASCE)0733-9496(1997)123:2(67)

Schaake J, Lai FH (1969) Linear programming and dynamic programming application to water distribution network design. M.I.T. Hydrodynamics Laboratory, Cambridge

Wang Q, Guidolin M, Savic D, Kapelan Z (2014) Two-Objective Design of Benchmark Problems of a Water Distribution System via MOEAs: Towards the Best-Known Approximation of the True Pareto Front. J Water Resour Plan Manag 04014060. doi: 10.1061/(ASCE)WR.1943-5452.0000460

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem