Mostrar el registro sencillo del ítem
dc.contributor.author | Percoco, Gianluca | es_ES |
dc.contributor.author | Sánchez Salmerón, Antonio José | es_ES |
dc.date.accessioned | 2016-06-03T08:24:15Z | |
dc.date.available | 2016-06-03T08:24:15Z | |
dc.date.issued | 2015-09 | |
dc.identifier.issn | 0957-0233 | |
dc.identifier.uri | http://hdl.handle.net/10251/65169 | |
dc.description.abstract | The measurement of millimetre and micro-scale features is performed by high-cost systems based on technologies with narrow working ranges to accurately control the position of the sensors. Photogrammetry would lower the costs of 3D inspection of micro-features and would be applicable to the inspection of non-removable micro parts of large objects too. Unfortunately, the behaviour of photogrammetry is not known when photogrammetry is applied to micro-features. In this paper, the authors address these issues towards the application of digital closerange photogrammetry (DCRP) to the micro-scale, taking into account that in literature there are research papers stating that an angle of view (AOV) around 10° is the lower limit to the application of the traditional pinhole close-range calibration model (CRCM), which is the basis of DCRP. At first a general calibration procedure is introduced, with the aid of an open-source software library, to calibrate narrow AOV cameras with the CRCM. Subsequently the procedure is validated using a reflex camera with a 60mm macro lens, equipped with extension tubes (20 and 32mm) achieving magnification of up to 2 times approximately, to verify literature findings with experimental photogrammetric 3D measurements of millimetresized objects with micro-features. The limitation experienced by the laser printing technology, used to produce the bi-dimensional pattern on common paper, has been overcome using an accurate pattern manufactured with a photolithographic process. The results of the experimental activity prove that the CRCM is valid for AOVs down to 3.4° and that DCRP results are comparable with the results of existing and more expensive commercial techniques. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | IOP Publishing: Hybrid Open Access | es_ES |
dc.relation.ispartof | Measurement Science and Technology | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Measuremen | es_ES |
dc.subject | Digital close-range photogrammetry | es_ES |
dc.subject | Camera calibration | es_ES |
dc.subject | Microfeatures | es_ES |
dc.subject | Vision inspection | es_ES |
dc.subject | Digital image processing | es_ES |
dc.subject | Open-source | es_ES |
dc.subject.classification | INGENIERIA DE SISTEMAS Y AUTOMATICA | es_ES |
dc.title | Photogrammetric measurement of 3D freeform millimetre-sized objects with micro features: an experimental validation of the close-range camera calibration model for narrow angles of view | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1088/0957-0233/26/9/095203 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica | es_ES |
dc.description.bibliographicCitation | Percoco, G.; Sánchez Salmerón, AJ. (2015). Photogrammetric measurement of 3D freeform millimetre-sized objects with micro features: an experimental validation of the close-range camera calibration model for narrow angles of view. Measurement Science and Technology. 26(9):1-9. doi:10.1088/0957-0233/26/9/095203 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1088/0957-0233/26/9/095203 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 9 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 26 | es_ES |
dc.description.issue | 9 | es_ES |
dc.relation.senia | 302161 | es_ES |
dc.description.references | Mitchell, H. L., Kniest, H. T., & Won‐Jin, O. (1999). Digital Photogrammetry and Microscope Photographs. The Photogrammetric Record, 16(94), 695-704. doi:10.1111/0031-868x.00148 | es_ES |
dc.description.references | Chen, Z., Liao, H., & Zhang, X. (2014). Telecentric stereo micro-vision system: Calibration method and experiments. Optics and Lasers in Engineering, 57, 82-92. doi:10.1016/j.optlaseng.2014.01.021 | es_ES |
dc.description.references | Stamatopoulos, C., & Fraser, C. S. (2011). Calibration of long focal length cameras in close range photogrammetry. The Photogrammetric Record, 26(135), 339-360. doi:10.1111/j.1477-9730.2011.00648.x | es_ES |
dc.description.references | Yang, X., & Fang, S. (2014). Effect of field of view on the accuracy of camera calibration. Optik, 125(2), 844-849. doi:10.1016/j.ijleo.2013.07.089 | es_ES |
dc.description.references | Strobl, K. H., Sepp, W., & Hirzinger, G. (2009). On the issue of camera calibration with narrow angular field of view. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. doi:10.1109/iros.2009.5354776 | es_ES |
dc.description.references | Ricolfe-Viala, C., & Sanchez-Salmeron, A.-J. (2010). Lens distortion models evaluation. Applied Optics, 49(30), 5914. doi:10.1364/ao.49.005914 | es_ES |
dc.description.references | Ricolfe-Viala, C., Sanchez-Salmeron, A.-J., & Valera, A. (2013). Efficient Lens Distortion Correction for Decoupling in Calibration of Wide Angle Lens Cameras. IEEE Sensors Journal, 13(2), 854-863. doi:10.1109/jsen.2012.2229704 | es_ES |
dc.description.references | Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11), 1330-1334. doi:10.1109/34.888718 | es_ES |
dc.description.references | Percoco, G., Lavecchia, F., & Salmerón, A. J. S. (2015). Preliminary Study on the 3D Digitization of Millimeter Scale Products by Means of Photogrammetry. Procedia CIRP, 33, 257-262. doi:10.1016/j.procir.2015.06.046 | es_ES |
dc.description.references | Ricolfe-Viala, C., & Sanchez-Salmeron, A.-J. (2011). Camera calibration under optimal conditions. Optics Express, 19(11), 10769. doi:10.1364/oe.19.010769 | es_ES |
dc.description.references | Guidi, G. (2013). Metrological characterization of 3D imaging devices. Videometrics, Range Imaging, and Applications XII; and Automated Visual Inspection. doi:10.1117/12.2021037 | es_ES |
dc.description.references | Herráez, J., Martínez-Llario, J., Coll, E., Rodríguez, J., & Martin, M. T. (2013). Design and calibration of a 3D modeling system by videogrammetry. Measurement Science and Technology, 24(3), 035001. doi:10.1088/0957-0233/24/3/035001 | es_ES |