- -

Lipid classes from marine species and meals intended for cephalopod feeding

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Lipid classes from marine species and meals intended for cephalopod feeding

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cerezo Valverde, Jesús es_ES
dc.contributor.author Hernández, María D. es_ES
dc.contributor.author García Garrido, Sandra es_ES
dc.contributor.author Rodríguez, Carmen es_ES
dc.contributor.author Estefanell, Juan es_ES
dc.contributor.author Gairin, Joan I. es_ES
dc.contributor.author Rodríguez, Carlos J. es_ES
dc.contributor.author Tomás Vidal, Ana es_ES
dc.contributor.author García García, Benjamín es_ES
dc.date.accessioned 2016-06-03T11:58:48Z
dc.date.available 2016-06-03T11:58:48Z
dc.date.issued 2012-02
dc.identifier.issn 0967-6120
dc.identifier.uri http://hdl.handle.net/10251/65211
dc.description.abstract In this study, HPTLC was used to make a quantitative analysis of the total lipid content (TL dry weight) and their classes in 39 samples, including molluscs, crustaceans, fish and meals in an attempt to identify those most suitable for formulating diets for cephalopods by reference to an index of nutritional quality (OILC: Oser's index modified for lipid classes). All the crustaceans analysed (< 10% TL), fish from artisanal fisheries such as Boops boops, Gadus poutassou, Mugil sp. and Gadus minutus (< 10% TL) and the plant meals (TL < 5%) would cause fewer digestive problems than the fish that were a by-catch from fish farms (B. boops or Sparus aurata), pelagic species (Sardina pilchardus or Trachurus trachurus) or krill meal, which are characterised by their high lipid content (20-60% TL). These latter feeds were associated with neutral lipids, mainly triglycerides during the summer. Mytilus galloprovincialis, Carcinus maenas, G. poutassou, Mugil sp., S. pilchardus and G. minutus had a more appropriate lipid content and profile during the winter, when they showed a higher OILC due to the greater variety of polar lipid classes they contained. Phospholipids like PS, PI and PE seem to be limiting nutrients in cephalopods because of their high content (78-542, 41-309 and 152-2,114 mg/100 g, respectively) compared with the rest of the samples. None of the meals analysed showed a good nutritional balance per se and should only be used in conjunction with other foods. es_ES
dc.description.sponsorship Project financed by the National Marine Culture Plans of JACUMAR. We thank the personnel of IRTA, ICCM, IFAPA and IEO for their help in the analytical techniques used. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Aquaculture International es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Lipid classes es_ES
dc.subject Cephalopod es_ES
dc.subject Nutrition es_ES
dc.subject Marine species es_ES
dc.subject Meal es_ES
dc.subject Seasonal variations es_ES
dc.subject HPTLC es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title Lipid classes from marine species and meals intended for cephalopod feeding es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10499-011-9442-z
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.description.bibliographicCitation Cerezo Valverde, J.; Hernández, MD.; García Garrido, S.; Rodríguez, C.; Estefanell, J.; Gairin, JI.; Rodríguez, CJ.... (2012). Lipid classes from marine species and meals intended for cephalopod feeding. Aquaculture International. 20(1):17-89. doi:10.1007/s10499-011-9442-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s10499-011-9442-z es_ES
dc.description.upvformatpinicio 17 es_ES
dc.description.upvformatpfin 89 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 206463 es_ES
dc.identifier.eissn 1573-143X
dc.contributor.funder Junta Nacional Asesora de Cultivos Marinos es_ES
dc.description.references Aguila J, Cuzon G, Pascual C, Domingues PM, Gaxiola G, Sánchez A, Maldonado T, Rosas C (2007) The effects of fish hydrolysate (CPSP) level on Octopus maya (Voss and Solis) diet: digestive enzyme, blood metabolites, and energy balance. Aquaculture 273:641–655 es_ES
dc.description.references Almansa E, Domingues PM, Sykes A, Tejera N, Lorenzo A, Andrade JP (2006) The effects of feeding with shrimp or fish fry on growth and mantle lipid compositor of juvenile and adult cuttlefish (Sepia officinalis). Aquaculture 256:403–413 es_ES
dc.description.references AOAC (1997) Official methods of analysis, 16th edn. Association of Official Analytical Chemists, Washington es_ES
dc.description.references Baeza-Rojano E, García S, Garrido D, Guerra-García JM, Domingues PM (2010) Use of Amphipods as alternative prey to culture cuttlefish (Sepia officinalis) hatchlings. Aquaculture 300:243–246 es_ES
dc.description.references Bandarra NM, Batista I, Nunes ML, Empis JM, Christie WW (1997) Seasonal changes in lipid composition of sardine (Sardine pilchardus). J Food Sci 62:40–42 es_ES
dc.description.references Boletzky SV, Hanlon RT (1983) A review of the laboratory maintenance, rearing and culture of cephalopod molluscs. Mem Natl Mus Vic 44:147–187 es_ES
dc.description.references Castro BG, Garrido JL, Sotelo CG (1992) Changes in composition of digestive gland and mantle muscle of the cuttlefish Sepia officinalis during starvation. Mar Biol 114:11–20 es_ES
dc.description.references Cerezo Valverde J, Hernández MD, Aguado-Giménez F, García García B (2008) Growth, feed efficiency, and condition of common octopus (Octopus vulgaris) fed on two formulated moist diets. Aquaculture 275:266–273 es_ES
dc.description.references Coutteau P, Geurden I, Camara MR, Bergot P, Sorgeloos P (1997) Review on the dietary effects of phospholipids in fish and crustacean larviculture. Aquaculture 155:149–164 es_ES
dc.description.references Domingues PM, Sykes A, Sommerfield A, Almansa E, Lorenzo A, Andrade JP (2004) Growth and survival of cuttlefish (Sepia officinalis) of different ages fed crustaceans and fish. Effects of frozen a live prey. Aquaculture 229:239–254 es_ES
dc.description.references Domingues PM, Ferreira A, Márquez L, Andrade JP, López N, Rosas C (2008) Growth, absorption and assimilation efficiency by mature cuttlefish (Sepia officinalis) fed with alternative and artificial diets. Aquacult Int 3:215–229 es_ES
dc.description.references Estefanell J, Socorro J, Guirao R, Fernández-Palacios H, Izquierdo M, Roo J (2010) First data on Octopus vulgaris (Cuvier 1797) ongrowing in benthic cages. In: EAS aquaculture Europe 2010. Book of abstracts. Porto, 5–8 Oct 2010, pp 427–428 es_ES
dc.description.references FAO (2007) Fishery and aquaculture statistics. Yearbook. Fisheries and Aquaculture Department. Food and Agriculture of the United Nations, Rome es_ES
dc.description.references Folch J, Lees N, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509 es_ES
dc.description.references García García B, Aguado Giménez F (2002) Influence of diet on ongrowing and nutrient utilization in the common octopus (Octopus vulgaris). Aquaculture 211:171–182 es_ES
dc.description.references García García B, Cerezo Valverde J (2006) Optimal proportions of crabs and fish in diet for common octopus (Ocotpus vulgaris) ongrowing. Aquaculture 253:502–511 es_ES
dc.description.references Hochachka PW, Moon TW, Mustafa T, Storey KB (1975) Metabolic sources of power for mantle muscle of a fast swimming squid. Comp Biochem Physiol 52B:151–158 es_ES
dc.description.references Iglesias J, Sánchez FJ, Bersano JGF, Carrasco JF, Dhont J, Fuentes L, Linares F, Muñoz JL, Okumura S, Roo FJ, van der Meeren T, Vidal EAG, Villanueva R (2007) Rearing of Octopus vulgaris paralarvae: present status, bottlenecks and trends. Aquaculture 266:1–15 es_ES
dc.description.references Joseph JD (1982) Lipid composition of marine and estuarine invertebrates. Part II: Mollusca. Prog Lipid Res 21:109–153 es_ES
dc.description.references Kanazawa A (1985) Essential fatty acid and lipid requirement of fish. In: Cowey CB, Mackie AM, Bell JG (eds) Nutrition and feeding of fish. Academic Press, London, pp 281–298 es_ES
dc.description.references Kanazawa A (2001) Sterols in marine invertebrates. Fish Sci 67:997–1107 es_ES
dc.description.references Kojima K, Nakayama Y, Hatanaka M, Hata M, Hata M (1986) The distribution of sulfolipid in marine mollusks. Bull Jpn Soc Sci Fish 52:1601–1605 es_ES
dc.description.references Koueta N, Boucaud-Camou E, Noel B (2002) Effect of enriched natural diet on survival and growth of juvenile cuttlefish Sepia officinalis L. Aquaculture 203:293–310 es_ES
dc.description.references Lee PG (1994) Metabolic substrates in cephalopods. In: Pörtner HO, O’Dor RK, MacMillan DL (eds) Physiology of cephalopod mollusc. Lifestyle and performance adaptations. Gordon and Breach Publishers, Basel, pp 35–51 es_ES
dc.description.references Luzia LA, Sampaio GR, Castellucci CMN, Torres EAFS (2003) The influence of season on the lipid profiles of five commercially important species of Brazilian fish. Food Chem 83:93–97 es_ES
dc.description.references Mazón MJ, Piedecausa MA, Hernández MD, García García B (2007) Evaluation of environmental nitrogen and phosphorus contributions as a result of intensive ongrowing of common octopus (Octopus vulgaris). Aquaculture 266:226–235 es_ES
dc.description.references Moltschaniwskyj NA, Johnston D (2006) Evidence that lipid can be digested by the dumpling squid Euprymna tasmanica, but is not stored in the digestive gland. Mar Biol 149:565–572 es_ES
dc.description.references Navarro JC, Villanueva R (2000) Lipid and fatty acid composition of early stages of cephalopods: an approach to their lipid requirements. Aquaculture 183:161–177 es_ES
dc.description.references Navarro JC, Villanueva R (2003) The fatty acid composition of Octopus vulgaris paralarvae reared with live and inert food: deviation from their natural fatty acid profile. Aquaculture 219:613–631 es_ES
dc.description.references O’Dor RK, Mangold K, Boucher-Rodoni R, Wells MJ, Wells J (1984) Nutrient absorption, storage and remobilization in Octopus vulgaris. Mar Behav Physiol 11:239–258 es_ES
dc.description.references Olsen RE, Henderson RJ (1989) The rapid analysis of neutral and polar marine lipids using double-development HPTLC and scanning densitometry. J Exp Mar Biol Ecol 129:189–197 es_ES
dc.description.references Oser BL (1951) Method for integrating essential amino acid content in the nutritional evaluation of protein. J Am Diet Assoc 27:396–402 es_ES
dc.description.references Pazos AJ, Sánchez JL, Román G, Pérez-Parallé ML, Abad M (2003) Seasonal changes in lipid classes and fatty acid composition in the digestive gland of Pecten maximus. Comp Biochem Physiol 134B:367–380 es_ES
dc.description.references Petza D, Katsanevakis S, Verriopoulos G (2006) Experimental evaluation of the energy balance in Octopus vulgaris, fed ad libitum on a high-lipid diet. Mar Biol 148:827–832 es_ES
dc.description.references Quintana D, Domingues PM, García S (2008) Effect of two artificial wet diets agglutinated with gelatin on feed and growth performance of common octopus (Octopus vulgaris) sub-adults. Aquaculture 280:161–164 es_ES
dc.description.references Rosa R, Pereira J, Nunes ML (2005) Biochemical composition of cephalopods with different life strategies, with special reference to a giant squid, Architeuthis sp. Mar Biol 146:739–751 es_ES
dc.description.references Rosas C, Cuzon G, Pascual C, Gaxiola G, Chay D, López N, Maldonado T, Domingues PM (2007) Energy balance of Octopus maya fed crab or an artificial diet. Mar Biol 152:371–381 es_ES
dc.description.references Rosas C, Tut J, Baeza J, Sánchez A, Sosa V, Pascual C, Arena L, Domingues PM, Cuzon G (2008) Effect of type of binder on growth, digestibility, and energetic balance of Octopus maya. Aquaculture 275:291–297 es_ES
dc.description.references Sánchez M, Hernández MD, Cerezo Valverde J, García García B (2009) Protein and lipid digestibility in common octopus (Octopus vulgaris). In: Cephalopod international advisory council symposium (CIAC’09), Vigo, 3–11 Sept 2009, p 86 es_ES
dc.description.references Sargent JR, Bell JG, McEvoy L, Tocher DR, Estevez A (1999) Recent developments in the essential fatty acid nutrition of fish. Aquaculture 177:191–200 es_ES
dc.description.references Sieiro MP, Aubourg SP, Rocha F (2006) Seasonal study of the lipid composition in different tissues of the common octopus (Octopus vulgaris). Eur J Lipid Sci Technol 108:479–487 es_ES
dc.description.references Sinanoglou VJ, Miniadis-Meimaroglou S (1998) Fatty acid of neutral and polar lipids of (edible) Mediterranean cephalopods. Food Res Int 31:467–473 es_ES
dc.description.references Sinanoglou VJ, Meimaroglou D, Miniadis-Meimaroglou S (2008) Triacylglycerols and their fatty acids in edible Mediterranean molluscs and crustacean. Food Chem 110:406–413 es_ES
dc.description.references Tocher DR, Bendiksen EA, Campbell PJ, Bell JG (2008) The role of phospholipids in nutrition and metabolism of teleost fish. Aquaculture 280:21–34 es_ES
dc.description.references Vaz-Pires P, Seixas P, Barbosa A (2004) Aquaculture potential of the common octopus (Octopus vulgaris Cuvier, 1797): a review. Aquaculture 238:221–238 es_ES
dc.description.references Villanueva R, Koueta N, Riba J, Boucaud-Camou E (2002) Growth and proteolytic activity of Octopus vulgaris paralarvae with different food rations during first-feeding, using Artemia nauplii and compound diets. Aquaculture 205:269–286 es_ES
dc.description.references Vonk HJ (1962) Emulgators in the digestive fluids of invertebrates. Arch Int Physiol Biochim 70:67–85 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem