- -

Development of a three-dimensional cell culture system based on microfluidics for nuclear magnetic resonance and optical monitoring

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Development of a three-dimensional cell culture system based on microfluidics for nuclear magnetic resonance and optical monitoring

Mostrar el registro completo del ítem

Esteve, V.; Berganzo, J.; Monge, R.; Martínez-Bisbal, M.; Villa, R.; Celda, B.; Fernández, L. (2014). Development of a three-dimensional cell culture system based on microfluidics for nuclear magnetic resonance and optical monitoring. Biomicrofluidics. 8(6):064105-1-064105-11. https://doi.org/10.1063/1.4902002

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/65306

Ficheros en el ítem

Metadatos del ítem

Título: Development of a three-dimensional cell culture system based on microfluidics for nuclear magnetic resonance and optical monitoring
Autor: Esteve, Vicent Berganzo, Javier Monge, Rosa Martínez-Bisbal, M.Carmen Villa, Rosa Celda, Bernardo Fernández, Luis
Entidad UPV: Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic
Fecha difusión:
Resumen:
A new microfluidic cell culture device compatible with real-time nuclear magnetic resonance (NMR) is presented here. The intended application is the long-term monitoring of 3D cell cultures by several techniques. The system ...[+]
Palabras clave: On-a-chip , Gold nanoparticles , NMR-SPECTROSCOPY , Mammalian-Cells , Single neurons , MR Microscopy , In-vivo , Microstructure , Platforms , Perfusion
Derechos de uso: Reserva de todos los derechos
Fuente:
Biomicrofluidics. (issn: 1932-1058 )
DOI: 10.1063/1.4902002
Editorial:
American Institute of Physics (AIP)
Versión del editor: http://dx.doi.org/10.1063/1.4902002
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//EUI2009-04093/ES/EPINET: UNDERSTANDING AND MANIPULATING EPILEPTIC NETWORKS/
info:eu-repo/grantAgreement/MICINN//SAF2009-14724-C02-02/ES/Desarrollo De Un Nuevo Metodo De Diagnostico No Invasivo De Patologias Corneales Por Bioimpedancia Utilizando Micronanoelectrodos/
Agradecimientos:
This work was supported partially by the Basque Government under the Etortek-Microsystems Programme, the ERANET-Neuron Project EPINet (EUI2009-04093) and SAF2009-14724-C02-02 from the Spanish Ministry of Science and ...[+]
Tipo: Artículo

References

Horská, A., & Barker, P. B. (2010). Imaging of Brain Tumors: MR Spectroscopy and Metabolic Imaging. Neuroimaging Clinics of North America, 20(3), 293-310. doi:10.1016/j.nic.2010.04.003

Mountford, C., Lean, C., Malycha, P., & Russell, P. (2006). Proton spectroscopy provides accurate pathology on biopsy and in vivo. Journal of Magnetic Resonance Imaging, 24(3), 459-477. doi:10.1002/jmri.20668

Esteve, V., Celda, B., & Martínez-Bisbal, M. C. (2012). Use of 1H and 31P HRMAS to evaluate the relationship between quantitative alterations in metabolite concentrations and tissue features in human brain tumour biopsies. Analytical and Bioanalytical Chemistry, 403(9), 2611-2625. doi:10.1007/s00216-012-6001-z [+]
Horská, A., & Barker, P. B. (2010). Imaging of Brain Tumors: MR Spectroscopy and Metabolic Imaging. Neuroimaging Clinics of North America, 20(3), 293-310. doi:10.1016/j.nic.2010.04.003

Mountford, C., Lean, C., Malycha, P., & Russell, P. (2006). Proton spectroscopy provides accurate pathology on biopsy and in vivo. Journal of Magnetic Resonance Imaging, 24(3), 459-477. doi:10.1002/jmri.20668

Esteve, V., Celda, B., & Martínez-Bisbal, M. C. (2012). Use of 1H and 31P HRMAS to evaluate the relationship between quantitative alterations in metabolite concentrations and tissue features in human brain tumour biopsies. Analytical and Bioanalytical Chemistry, 403(9), 2611-2625. doi:10.1007/s00216-012-6001-z

Esteve, V., Martínez-Granados, B., & Martínez-Bisbal, M. C. (2014). Pitfalls to be considered on the metabolomic analysis of biological samples by HR-MAS. Frontiers in Chemistry, 2. doi:10.3389/fchem.2014.00033

G. Jenkins and C. D. Mansfield ,Microfluidic Diagnostics Methods and Protocols, Methods in Molecular Biology, Methods and Protocols( Humana Press: Imprint Humana Press, Totowa, New Jersey, 2013), Chap. XIII, 525 p.

Bernardi, A., Jiménez-Barbero, J., Casnati, A., De Castro, C., Darbre, T., Fieschi, F., … Imberty, A. (2013). Multivalent glycoconjugates as anti-pathogenic agents. Chem. Soc. Rev., 42(11), 4709-4727. doi:10.1039/c2cs35408j

Aznar, E., Martínez-Máñez, R., & Sancenón, F. (2009). Controlled release using mesoporous materials containing gate-like scaffoldings. Expert Opinion on Drug Delivery, 6(6), 643-655. doi:10.1517/17425240902895980

Jiang, S., Win, K. Y., Liu, S., Teng, C. P., Zheng, Y., & Han, M.-Y. (2013). Surface-functionalized nanoparticles for biosensing and imaging-guided therapeutics. Nanoscale, 5(8), 3127. doi:10.1039/c3nr34005h

Jung, S., Nam, J., Hwang, S., Park, J., Hur, J., Im, K., … Kim, S. (2013). Theragnostic pH-Sensitive Gold Nanoparticles for the Selective Surface Enhanced Raman Scattering and Photothermal Cancer Therapy. Analytical Chemistry, 85(16), 7674-7681. doi:10.1021/ac401390m

Melancon, M. P., Lu, W., Zhong, M., Zhou, M., Liang, G., Elliott, A. M., … Jason Stafford, R. (2011). Targeted multifunctional gold-based nanoshells for magnetic resonance-guided laser ablation of head and neck cancer. Biomaterials, 32(30), 7600-7608. doi:10.1016/j.biomaterials.2011.06.039

Murray, R. A., Qiu, Y., Chiodo, F., Marradi, M., Penadés, S., & Moya, S. E. (2014). A Quantitative Study of the Intracellular Dynamics of Fluorescently Labelled Glyco-Gold Nanoparticles via Fluorescence Correlation Spectroscopy. Small, 10(13), 2602-2610. doi:10.1002/smll.201303604

Caravan, P., Ellison, J. J., McMurry, T. J., & Lauffer, R. B. (1999). Gadolinium(III) Chelates as MRI Contrast Agents:  Structure, Dynamics, and Applications. Chemical Reviews, 99(9), 2293-2352. doi:10.1021/cr980440x

Van de Stolpe, A., & den Toonder, J. (2013). Workshop meeting report Organs-on-Chips: human disease models. Lab on a Chip, 13(18), 3449. doi:10.1039/c3lc50248a

El-Ali, J., Sorger, P. K., & Jensen, K. F. (2006). Cells on chips. Nature, 442(7101), 403-411. doi:10.1038/nature05063

Kim, L., Vahey, M. D., Lee, H.-Y., & Voldman, J. (2006). Microfluidic arrays for logarithmically perfused embryonic stem cell culture. Lab on a Chip, 6(3), 394. doi:10.1039/b511718f

Kim, L., Toh, Y.-C., Voldman, J., & Yu, H. (2007). A practical guide to microfluidic perfusion culture of adherent mammalian cells. Lab on a Chip, 7(6), 681. doi:10.1039/b704602b

Tourovskaia, A., Figueroa-Masot, X., & Folch, A. (2005). Differentiation-on-a-chip: A microfluidic platform for long-term cell culture studies. Lab on a Chip, 5(1), 14. doi:10.1039/b405719h

Sackmann, E. K., Fulton, A. L., & Beebe, D. J. (2014). The present and future role of microfluidics in biomedical research. Nature, 507(7491), 181-189. doi:10.1038/nature13118

Blackband, S. J., Buckley, D. L., Bui, J. D., & Phillips, M. I. (1999). NMR microscopy—beginnings and new directions. Magma: Magnetic Resonance Materials in Physics, Biology, and Medicine, 9(3), 112-116. doi:10.1007/bf02594606

KETTUNEN, M., & BRINDLE, K. (2005). Apoptosis detection using magnetic resonance imaging and spectroscopy. Progress in Nuclear Magnetic Resonance Spectroscopy, 47(3-4), 175-185. doi:10.1016/j.pnmrs.2005.08.005

Benveniste, H., & Blackband, S. J. (2006). Translational neuroscience and magnetic-resonance microscopy. The Lancet Neurology, 5(6), 536-544. doi:10.1016/s1474-4422(06)70472-0

Ehrmann, K., Pataky, K., Stettler, M., Wurm, F. M., Brugger, J., Besse, P.-A., & Popovic, R. (2007). NMR spectroscopy and perfusion of mammalian cells using surface microprobes. Lab on a Chip, 7(3), 381. doi:10.1039/b613240e

Shepherd, T. M., Scheffler, B., King, M. A., Stanisz, G. J., Steindler, D. A., & Blackband, S. J. (2006). MR microscopy of rat hippocampal slice cultures: A novel model for studying cellular processes and chronic perturbations to tissue microstructure. NeuroImage, 30(3), 780-786. doi:10.1016/j.neuroimage.2005.10.020

Grant, S. C., Aiken, N. R., Plant, H. D., Gibbs, S., Mareci, T. H., Webb, A. G., & Blackband, S. J. (2000). NMR spectroscopy of single neurons. Magnetic Resonance in Medicine, 44(1), 19-22. doi:10.1002/1522-2594(200007)44:1<19::aid-mrm4>3.0.co;2-f

Grant, S. C., Buckley, D. L., Gibbs, S., Webb, A. G., & Blackband, S. J. (2001). MR microscopy of multicomponent diffusion in single neurons. Magnetic Resonance in Medicine, 46(6), 1107-1112. doi:10.1002/mrm.1306

Blanco, F. J., Agirregabiria, M., Garcia, J., Berganzo, J., Tijero, M., Arroyo, M. T., … Mayora, K. (2004). Novel three-dimensional embedded SU-8 microchannels fabricated using a low temperature full wafer adhesive bonding. Journal of Micromechanics and Microengineering, 14(7), 1047-1056. doi:10.1088/0960-1317/14/7/027

Duval, D., González-Guerrero, A. B., Dante, S., Osmond, J., Monge, R., Fernández, L. J., … Lechuga, L. M. (2012). Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers. Lab on a Chip, 12(11), 1987. doi:10.1039/c2lc40054e

Liu, J., Cai, B., Zhu, J., Ding, G., Zhao, X., Yang, C., & Chen, D. (2004). Process research of high aspect ratio microstructure using SU-8 resist. Microsystem Technologies, 10(4), 265-268. doi:10.1007/s00542-002-0242-2

Altuna, A., Gabriel, G., Menéndez de la Prida, L., Tijero, M., Guimerá, A., Berganzo, J., … Fernández, L. J. (2010). SU-8-based microneedles forin vitroneural applications. Journal of Micromechanics and Microengineering, 20(6), 064014. doi:10.1088/0960-1317/20/6/064014

Fernández, L. J., Altuna, A., Tijero, M., Gabriel, G., Villa, R., Rodríguez, M. J., … Blanco, F. J. (2009). Study of functional viability of SU-8-based microneedles for neural applications. Journal of Micromechanics and Microengineering, 19(2), 025007. doi:10.1088/0960-1317/19/2/025007

Ni, M., Tong, W. H., Choudhury, D., Rahim, N. A. A., Iliescu, C., & Yu, H. (2009). Cell Culture on MEMS Platforms: A Review. International Journal of Molecular Sciences, 10(12), 5411-5441. doi:10.3390/ijms10125411

Kotzar, G., Freas, M., Abel, P., Fleischman, A., Roy, S., Zorman, C., … Melzak, J. (2002). Evaluation of MEMS materials of construction for implantable medical devices. Biomaterials, 23(13), 2737-2750. doi:10.1016/s0142-9612(02)00007-8

Nemani, K. V., Moodie, K. L., Brennick, J. B., Su, A., & Gimi, B. (2013). In vitro and in vivo evaluation of SU-8 biocompatibility. Materials Science and Engineering: C, 33(7), 4453-4459. doi:10.1016/j.msec.2013.07.001

Rigat-Brugarolas, L. G., Elizalde-Torrent, A., Bernabeu, M., De Niz, M., Martin-Jaular, L., Fernandez-Becerra, C., … del Portillo, H. A. (2014). A functional microengineered model of the human splenon-on-a-chip. Lab Chip, 14(10), 1715-1724. doi:10.1039/c3lc51449h

Torrejon, K. Y., Pu, D., Bergkvist, M., Danias, J., Sharfstein, S. T., & Xie, Y. (2013). Recreating a human trabecular meshwork outflow system on microfabricated porous structures. Biotechnology and Bioengineering, 110(12), 3205-3218. doi:10.1002/bit.24977

Ahlenius, H., & Kokaia, Z. (2010). Isolation and Generation of Neurosphere Cultures from Embryonic and Adult Mouse Brain. Mouse Cell Culture, 241-252. doi:10.1007/978-1-59745-019-5_18

Gil-Perotín, S., Duran-Moreno, M., Cebrián-Silla, A., Ramírez, M., García-Belda, P., & García-Verdugo, J. M. (2013). Adult Neural Stem Cells From the Subventricular Zone: A Review of the Neurosphere Assay. The Anatomical Record, 296(9), 1435-1452. doi:10.1002/ar.22746

Martínez-Bisbal, M. C., Esteve, V., Martínez-Granados, B., & Celda, B. (2011). Magnetic Resonance Microscopy Contribution to Interpret High-Resolution Magic Angle Spinning Metabolomic Data of Human Tumor Tissue. Journal of Biomedicine and Biotechnology, 2011, 1-8. doi:10.1155/2011/763684

Moroni, L., de Wijn, J. R., & van Blitterswijk, C. A. (2008). Integrating novel technologies to fabricate smart scaffolds. Journal of Biomaterials Science, Polymer Edition, 19(5), 543-572. doi:10.1163/156856208784089571

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem